Feed aggregator

Seismic echoes reveal a mysterious 'donut' inside Earth's core

Phys.org: Earth science - Mon, 09/02/2024 - 16:16
About 2,890 kilometers beneath our feet lies a gigantic ball of liquid metal: our planet's core. Scientists like me use the seismic waves created by earthquakes as a kind of ultrasound to "see" the shape and structure of the core.

Electricity generated by earthquakes might be the secret behind giant gold nuggets

Phys.org: Earth science - Mon, 09/02/2024 - 15:00
Scientists have long been fascinated by the formation of gold nuggets, often found nestled within quartz veins. New research led by Monash University geologists suggests that the process might be even more electrifying than we previously thought—literally.

Channel‐Spanning Logjams and Reach‐Scale Hydraulic Resistance in Mountain Streams

GRL - Mon, 09/02/2024 - 14:43
Abstract

Logjams create an upstream backwater of deepened, slower water, locally reducing bed shear stress. We compared hydraulic impact of logjam series across 37 geomorphically diverse reaches of mountain streams observed over 11 years in the US Southern Rockies. To enable reach-scale comparison of logjam structure and spacing, we identified the modeled best-fit effective resistance coefficient minimizing difference between outflow exiting a 1D channel with logjams present, and the same model channel with elevated channel resistance. Effective resistance increased with ratio of jam upstream depth to depth without a logjam, ratio of backwater length to average spacing, and decreased for randomly distributed jams due to close spacing, which reduced backwater impact. An analytic approximation and boundaries for region of relative spacing with steepest increase in effective resistance are provided. Our results can assist in targeting interventions to areas where hydraulic impact is greatest, providing value for money in nature-based solution design.

The Polarity of IMF By Strongly Modulates Particle Precipitation During High‐Speed Streams

GRL - Mon, 09/02/2024 - 14:40
Abstract

Recent studies have suggested that the interplanetary magnetic field (IMF) By ${B}_{y}$ component modulates particle precipitation during solstices, or periods of high dipole tilt Ψ ${\Psi }$. So far this explicit IMF By ${B}_{y}$-effect has only been shown in statistical studies. Here we analyzed a sequence of high-speed stream (HSS) driven events of auroral (<30 ${< } 30$ keV) and medium energy (>30 ${ >} 30$ keV and >100 ${ >} 100$ keV) particle precipitation. We show that when HSSs are comparable in terms of IMF and solar wind parameters, they can lead to systematically stronger particle precipitation in individual events when the signs of By ${B}_{y}$ and Ψ ${\Psi }$ are opposite. We also perform a superposed epoch analysis of 485 HSSs giving further evidence that the By ${B}_{y}$-effect is especially significant during HSSs. This is likely due to the persistent IMF By ${B}_{y}$ polarity during HSSs. We show evidence that the By ${B}_{y}$ dependence in particle precipitation is caused by a similar By ${B}_{y}$ dependence in substorm occurrence.

Amazon rainforest fires produce secondary ultrafine particles that may affect weather and climate

Phys.org: Earth science - Mon, 09/02/2024 - 14:07
Particles in wildfire smoke can lower air quality and harm human health. Smoke aerosols can also influence weather and climate by modifying cloud formation and changing how much of the sun's energy is reflected or absorbed by the atmosphere. Compared to larger particles directly emitted from fires, the formation and presence of ultrafine particles (UFPs) have previously been overlooked, as it was thought that they were quickly "scavenged" by the larger particles.

New evidence supports theory that oxygen isotope ratio in seawater slowly increased over last 540 million years

Phys.org: Earth science - Mon, 09/02/2024 - 14:00
An international team of ocean, Earth and marine scientists has found evidence supporting a theory that a certain oxygen isotope ratio in seawater has changed slowly over the past 540 million years. In their study, published in the Proceedings of the National Academy of Sciences, the group analyzed rocks from the Ordovician period.

Electron Acceleration via Secondary Reconnection in the Separatrix Region of Magnetopause Reconnection

GRL - Mon, 09/02/2024 - 13:39
Abstract

Magnetic reconnection is a fundamental process known to play a crucial role in electron acceleration and heating, however, the mechanism of electron energization during reconnection is still not fully understood. This study introduces a novel electron acceleration mechanism in which electrons can be accelerated by secondary reconnection in the separatrix region. The secondary reconnection occurs in a thin current sheet resulted from the shear of the out-of-plane Hall magnetic fields of the primary magnetopause reconnection. It results in the intense electron energy fluxes toward the primary X-line. This mechanism will likely be an important piece in the puzzle of particle acceleration by reconnection.

Light Transfers Through a Koch Shape Cloud

GRL - Mon, 09/02/2024 - 13:34
Abstract

Modeling radiative transfer in a 3D cloudy atmosphere is critical to climate projections. A recently developed fast 3D radiation parameterization scheme gains some success in quantifying horizontal radiative transfer through cloud sides using cloud area fraction. Based on 3D Monte Carlo simulations of radiative transfer through an idealized single-layer cloud with Koch-shaped fractal geometry edges, here we show that radiative energy transport through cloud sides correlates more significantly with cloud area fraction than with cloud perimeter length. The results exemplify the importance of accounting for the horizontal radiative energy exchanges between cloud-free and cloudy regions with cloud area fraction. Results from additional sensitivity simulations show that increased cloud vertical extent often enhances cloud-side sunlight leak more significantly than cloud-side sunlight interception. At low sun elevations, cloud-side sunlight interception is enhanced more than cloud-side sunlight leak does with the increase of cloud mass.

The risk of global water scarcity is greater when accounting for the origin of rain, study shows

Phys.org: Earth science - Mon, 09/02/2024 - 13:31
Securing the world's water supply is one of the greatest challenges of our time. Research at Stockholm University is now presenting an alternative method for quantifying the global risk of water scarcity. Results indicate higher risks to water supply than previously expected if accounting for the environmental conditions and governability where rain is produced.

Predicting avalanches: Fracture characteristics of anticracks in highly porous materials

Phys.org: Earth science - Mon, 09/02/2024 - 13:29
Even a single person in the snow can exert enough pressure on it to cause a buried weak layer of snow to collapse and the snow cover to slide away. In this case, experts speak of anticracks. The fundamental fracture properties that can lead to powerful slab avalanches are still largely unknown, but crucial in order to accurately predict when avalanches will occur.

Autogenic Formation of Bimodal Grain Size Distributions in Rivers and Its Contribution to Gravel‐Sand Transitions

GRL - Mon, 09/02/2024 - 13:19
Abstract

Riverbeds often fine downstream, with a gravel-bedded reach, a relatively abrupt gravel-sand transition (GST), and a sand-bedded reach. Underlying this behavior, bed grain size distributions are often bimodal, with a relative paucity (gap) around the range 1–5 mm. There is no general morphodynamic model capable of producing the grain size gap and gravel-sand transition autogenically from a unimodal sediment supply. Here we use a one-dimensional morphodynamic model including size-specific bedload and suspended load transport, to show that bimodality readily evolves autogenically even under unimodal sediment feed. A GST forms when we include a floodplain width that abruptly increases at some point. Upstream of the transition, non-gap gravel ceases to move and gap sediment is preferentially transported. At the transition, non-gap sand rapidly deposits from suspension, enhancing gap sediment mobility and diluting its presence on the bed.

Evidences of Permafrost Signatures in the Planform Shape of Arctic Meandering Streams

GRL - Mon, 09/02/2024 - 13:09
Abstract

We investigate whether geomorphic signatures of permafrost are embedded in planforms of river meanders, and we inquire as to how physical factors unique to permafrost environments are able to affect their dynamics. By exploiting satellite imagery, a data set of 19 freely-meandering Arctic rivers is compared against an independent data set of 23 freely-meandering streams flowing through temperate and tropical regions. Suitable dimensionless metrics are defined to characterize morphometric properties of meanders in terms of the spatio-temporal distribution of curvature and channel width. Results show the absence of marked contrasts in the amplitude of bend-curvature between the two data set. Differently, we find a permafrost signature in the channel width response, which manifests itself through larger values of the average bend-width and by peaks of width fluctuations. Field data suggest that permafrost meanders tend to widen for increasing bend sinuosity, likely promoting a shift of their morphodynamic regime as final cutoff is approached.

Slab Segmentation and Stacking in Mantle Transition Zone Controls Disparate Surface and Lower Mantle Subducting Rates and Complex Slab Morphology

GRL - Mon, 09/02/2024 - 13:03
Abstract

The contradiction of high subducting plate rate (ranging from 4 to 9 cm/yr on Earth's surface) and low slab sinking rate (about 1 and 2 cm/yr in lower mantle) calls for significant slab deformation in the middle mantle. However, mechanisms that can account for both the deformation and the rate discrepancy have not been fully explored. Here, using 2-D numerical models that incorporate grain size evolution, we propose a new slab deformation mode, slab segmentation and stacking, to accommodate the differential slab sinking rates. Our results show that the segmented slab due to faulting and grain-size reduction may further break off and stack over itself as it encounters the high-viscosity lower mantle. Stacked slabs slowly sink in the lower mantle, while periodic slab tearing hinders upward stress transmission, allowing shallow plates to subduct at a higher rate. This discovered mode also provides an alternative explanation for slab thickening in the lower mantle.

Hillside erosion worsening in California due to wildfires and intense rain

Phys.org: Earth science - Mon, 09/02/2024 - 11:10
Over the last three decades, California has seen increasing erosion after major wildfires—a phenomenon that not only endangers water resources and ecosystems, but is also likely to worsen with climate change, according to researchers.

Observational Evidence for the Neutral Wind Responses in the Mid‐Latitude Lower Thermosphere to the Strong Geomagnetic Activity

Space Weather - Mon, 09/02/2024 - 06:26
Abstract

Based on two meteor radars in mid-latitudes of China, the mid-latitude lower thermospheric neutral wind responses to the 2015 St. Patrick's Day great storm are investigated. The AE and PCN indices presented the similar quasi-5-hour oscillations during the storm. Interestingly, the analogous and close-correlated storm-time quasi-5-hour oscillations were also observed in both the meridional wind differences at 90–102 km derived from meteor radars. The meridional wind disturbances in the lower thermosphere also showed the extension toward the lower latitudes. It has been found that the enhanced equatorward wind disturbances at 250 km estimated by the Horizontal Wind Model-14 and Fabry-Perot Interferometer (FPI) emerged accordingly with the increases of AE and PCN with a time delay. And the enhancements of equatorward (poleward) wind disturbances at 250 km were accompanied by the increments of equatorward (poleward) wind disturbances at 94 km with a time lag of a few hours. It is thus suggested that the multiple intensified Joule heating events with quasi-5-hour time intervals were triggered by the successive substorm expansions during the storm. Then the Joule heating events led to the vertical wind and temperature disturbances in the mid-latitude lower thermosphere via disturbing the thermospheric meridional circulation, which consequently induced the quasi-5-hour meridional wind disturbances therein.

Observation of Quiet‐Time Mid‐Latitude Joule Heating and Comparisons With the TIEGCM Simulation

JGR:Space physics - Mon, 09/02/2024 - 06:16
Abstract

Joule heating is a major energy sink in the solar wind-magnetosphere-ionosphere system and modeling it is key to understanding the impact of space weather on the neutral atmosphere. Ion drifts and neutral wind velocities are key parameters when modeling Joule heating, however there is limited validation of the modeled ion and neutral velocities at mid-latitudes. We use the Blackstone Super Dual Auroral Radar Network radar and the Michigan North American Thermosphere Ionosphere Observing Network Fabry-Perot interferometer to obtain the local nightside ion and neutral velocities at ∼40° geographic latitude during the nighttime of 16 July 2014. Despite being a geomagnetically quiet period, we observe significant sub-auroral ion flows in excess of 200 ms−1. We calculate an enhancement to the local Joule heating rate due to these ion flows and find that the neutrals impart a significant increase or decrease to the total Joule heating rate of >75% depending on their direction. We compare our observations to outputs from the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM). At such a low geomagnetic activity however, TIEGCM was not able to model significant sub-auroral ion flows and any resulting Joule heating enhancements equivalent to our observations. We found that the neutral winds were the primary contributor to the Joule heating rates modeled by TIEGCM rather than the ions as suggested by our observations.

Testing Paleomagnetic Dating on Pre‐Historic Flank Eruptions From SE Slope of Etna Volcano

JGR–Solid Earth - Mon, 09/02/2024 - 04:45
Abstract

During the last 20 kyr, the Etna volcano has been characterized by almost continuous summit eruptions and by less frequent—yet definitely more destructive—flank eruptions issuing at <1,000 m asl altitudes and reaching the Ionian Sea. The chronological framework of pre-historic (pre-2,750 yr BP) flank eruptions is supported only by few radiometric and paleomagnetic ages. Here we paleomagnetically investigated 15 Holocene lava flows from SE Etna lower slopes and dated 12 of them. Paleomagnetic dating at Etna relies on best method pre-requisites: European location where reference geomagnetic models are well defined, and detailed stratigraphic evidence is available. We sampled 45 sites (450 oriented cores) from lavas loosely constrained in the 19,000–2,000 yr BP age window. Ten eruptions yielded a minimum 40% refinement with respect to initial age constraints, with four lava flows achieving refinement up to 90%. We obtained 620–1,398 yr (998 yr on average) dating accuracy for three flows bracketed in relatively short (1,398–1,644 yr) independent age constraints. By contrast, five flows characterized by longer 6,567–7,439 yr initial age windows yielded multiple age solutions. Finally, four lava flows with 1,644–6,567 yr-long initial age windows were tightly dated with 120–680 yr age ranges. We conclude that at volcanoes where best paleomagnetic dating pre-requisite are fulfilled, singular solutions are expected for 30% of the analyzed flows and, significant refinements for the others. Seven kyr seems to represent an independent age window threshold length to get or not significant dating refinements.

On the Use of SuperDARN Ground Backscatter Measurements for Ionospheric Propagation Model Validation

Space Weather - Mon, 09/02/2024 - 03:39
Abstract

Prior to use in operational systems, it is essential to validate ionospheric models in a manner relevant to their intended application to ensure satisfactory performance. For Over-the-Horizon radars (OTHR) operating in the high-frequency (HF) band (3–30 MHz), the problem of model validation is severe when used in Coordinate Registration (CR) and Frequency Management Systems (FMS). It is imperative that the full error characteristics of models is well understood in these applications due to the critical relationship they impose on system performance. To better understand model performance in the context of OTHR, we introduce an ionospheric model validation technique using the oblique ground backscatter measurements in soundings from the Super Dual Auroral Radar Network (SuperDARN). Analysis is performed in terms of the F-region leading edge (LE) errors and assessment of range-elevation distributions using calibrated interferometer data. This technique is demonstrated by validating the International Reference Ionosphere (IRI) 2016 for January and June in both 2014 and 2018. LE RMS errors of 100–400 km and 400–800 km are observed for winter and summer months, respectively. Evening errors regularly exceeding 1,000 km across all months are identified. Ionosonde driven corrections to the IRI-2016 peak parameters provide improvements of 200–800 km to the LE, with the greatest improvements observed during the nighttime. Diagnostics of echo distributions indicate consistent underestimates in model NmF2 during the daytime hours of June 2014 due to offsets of −8° being observed in modeled elevation angles at 18:00 and 21:00 UT.

SubAuroral Red Arcs Generated by Inner Magnetospheric Heat Flux and by SubAuroral Polarization Streams

GRL - Mon, 09/02/2024 - 01:39
Abstract

Subauroral red (SAR) arcs are commonly observed ionospheric red line emissions. They are usually attributed to subauroral electron heating by inner magnetospheric heat flux (IMHF). However, the role of IMHF in changing the ionosphere-thermosphere (IT) still remains elusive. We conduct controlled numerical experiments with the Thermosphere-Ionosphere Electrodynamic General Circulation Model (TIEGCM). Coulomb collisional heat flux derived with the Comprehensive Inner Magnetosphere Ionosphere (CIMI) model and empirical subauroral polarization streams (SAPS) are implemented in TIEGCM. The heat flux causes electron temperature enhancement, electron density depletion, and consequently SAR arcs formed in the dusk-to-midnight subauroral ionosphere region. SAPS cause more substantial plasma and neutral heating and plasma density variations in a broader region. The maximum enhancement of subauroral red line emission rate is comparable to that caused by the heat flux. However, the visibility of SAR arcs also depends on the relative enhancement to the background brightness.

Modeling random isotropic vector fields on the sphere: theory and application to the noise in GNSS station position time series

Journal of Geodesy - Mon, 09/02/2024 - 00:00
Abstract

While the theory of random isotropic scalar fields on the sphere is well established, it has not been fully extended to the case of vector fields yet. In this contribution, several theoretical results are thus generalized to random isotropic vector fields on the sphere, including an equivalent of the Wiener–Khinchin theorem, which relates the distance-dependent covariance of the field’s components in a particular rotationally invariant basis to the covariance of the vector spherical harmonic coefficients of the field, i.e., its angular power spectrum. A parametric model, based on a stochastic partial differential equation, is proposed to represent the spatial covariance and angular power spectrum of such fields. Such a model is adjusted, with minor modifications, to empirical spatial correlations of the white noise and flicker noise components of 3D displacement time series of ground global navigation satellite system (GNSS) tracking stations. The obtained spatial correlation model may find several applications such as enhanced detection of offsets in GNSS station position time series, enhanced estimation of long-term ground deformation (i.e., station velocities), enhanced isolation of station-specific displacements (i.e., spatial filtering) and more realistic assessment of uncertainties in all GNSS network-based applications (e.g., estimation of crustal strain rates, of glacial isostatic adjustment models or of tectonic plate motion models).

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer