Feed aggregator

Major river deltas are sinking faster than sea-level rise, study shows

Phys.org: Earth science - Wed, 01/14/2026 - 16:00
A study published in Nature shows that many of the world's major river deltas are sinking faster than sea levels are rising, potentially affecting hundreds of millions of people in these regions.

World-first ice archive to guard secrets of melting glaciers

Phys.org: Earth science - Wed, 01/14/2026 - 15:10
Scientists on Wednesday sealed ancient chunks of glacial ice in a first-of-its-kind sanctuary in Antarctica in the hope of preserving these fast-disappearing records of Earth's past climate for centuries to come.

From bolts to blue jets, lightning comes in many strange forms

Phys.org: Earth science - Wed, 01/14/2026 - 15:03
Lightning has captured people's fascination for millennia. It's embedded in mythology, religion and popular culture. Think of Thor in Norse mythology or Indra in Hinduism.

As we begin to assess the fire damage in Victoria, we must not overlook these hidden costs

Phys.org: Earth science - Wed, 01/14/2026 - 14:53
Devastated by widespread fires, Victoria has declared a state of disaster. More than 500 structures have reportedly been destroyed and 1,000 agricultural properties have been affected. Tragically, there has also been one fatality.

AI Sheds Light on Hard-to-Study Ocean Currents

EOS - Wed, 01/14/2026 - 14:12
Source: Journal of Geophysical Research: Machine Learning and Computation

The Indonesian Throughflow carries both warm water and fresh water from the Pacific into the Indian Ocean. As the only low-latitude current that connects the two bodies of water, it plays a key role in ocean circulation and sea surface temperature worldwide.

The current is as complex as it is important: The seas surrounding Indonesia are home to deep basins and sills and a hodgepodge of ocean processes that make the Indonesian Throughflow difficult to measure. On-the-ground—or, rather, on-the-sea—observations are scarce as well because such observational systems are expensive and difficult to design and maintain.

Wang et al. combined artificial intelligence (AI) modeling techniques with observing system simulation experiment design concepts. Their method used sea surface height measurements to predict the behavior of this influential current and its individual passages and estimate which strait has the greatest effect on the current’s behavior.

The researchers developed a deep learning model that uses two types of networks to conduct observing system simulation experiments. The first, called a convolutional neural network (CNN), is often used for image classification and, in this case, was used to extract trends from data about the Indonesian Throughflow. The second, called a recurrent neural network (RNN), is most commonly used to sort through sequential data. In this work, the RNN processed the trends identified by the CNN and analyzed their changes over time. The approach proved to be much less computationally costly than running a traditional observing system simulation experiment.

The results recapitulated observed water transport trends and showed that sea surface height is a key predictor of conditions in some of the shallower straits between Indonesian islands. The Maluku Strait emerged as a passage where water conditions have a strong influence on the entire system and thus as a strong candidate for future monitoring efforts, the researchers found. Combining information about the Maluku and Halmahera Straits was even more effective at predicting system-wide conditions. (Journal of Geophysical Research: Machine Learning and Computation, https://doi.org/10.1029/2025JH000808, 2025)

—Saima May Sidik (@saimamay.bsky.social), Science Writer

Citation: Sidik, S. M. (2026), AI sheds light on hard-to-study ocean currents, Eos, 107, https://doi.org/10.1029/2026EO260027. Published on 14 January 2026. Text © 2026. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Fire on ice: The Arctic's changing fire regime

Phys.org: Earth science - Wed, 01/14/2026 - 14:12
The number of wildland fires burning in the Arctic is on the rise, according to NASA researchers. Moreover, these blazes are burning larger, hotter, and longer than they did in previous decades.

Los microplásticos tienen efectos muy variados en el suelo

EOS - Wed, 01/14/2026 - 14:12

This is an authorized translation of an Eos article. Esta es una traducción al español autorizada de un artículo de Eos.

A medida que la producción mundial de plástico se ha disparado, pequeños fragmentos de plástico se han infiltrado en los ríos, el hielo marino e incluso en nuestros cerebros. De acuerdo con un nuevo estudio, cuando las minúsculas fibras y los fragmentos se filtran en el suelo, cambian la forma en que este interactúa con el agua.

El estudio, publicado en la revista Vadose Zone Journal, midió la retención de agua y la conductividad en suelos de tres regiones de Alemania con y sin cuatro microplásticos diferentes. Los investigadores encontraron que una concentración de plástico de solo el 0.4% en masa puede cambiar la velocidad con que el agua fluye a través del suelo, dependiendo tanto del tipo de plástico como del tipo de suelo. Según los autores, es probable que las propiedades hidráulicas alteradas se deban a la naturaleza hidrófoba del plástico y a que las partículas de microplástico cambian la disposición de los gránulos individuales del suelo.

Las pequeñas partículas del suelo se adhieren entre sí formando grumos. Los espacios entre estos grumos forman conductos por los que circulan agua, nutrientes y las raíces de las plantas. El tamaño y la distribución de estos espacios afectan al drenaje del suelo y a su capacidad de retención de agua, lo que tiene implicaciones para el crecimiento de las plantas.

“Las características hídricas de un suelo indican la rapidez con la que el agua se drena a través del suelo, lo que afecta a los cultivos y a los acuíferos.”

“Las características hídricas del suelo indican la rapidez con la que el agua se drena a través del suelo, lo que impacta cultivos y acuíferos”, menciona la autora principal del estudio, Katharina Neubert, científica especializada en suelos del Forschungszentrum Jülich en Alemania.

Investigaciones anteriores han mostrado que los microplásticos pueden alterar la estructura del suelo y sus propiedades hidráulicas, pero cada uno de esos estudios examinó sólo un tipo de suelo o un tipo de plástico. El nuevo estudio es el primero en evaluar cómo múltiples tipos de microplásticos afectan a múltiples tipos de suelo.

Los investigadores colectaron suelo de tres regiones agrícolas distintas de Alemania, que tenían diferentes texturas, niveles de carbono y niveles de pH. Después, obtuvieron cuatro microplásticos ampliamente usados variando en tamaño entre 300 micrómetros y 5 milímetros: polietileno, polipropileno, poliestireno y poliéster. Descompusieron las partículas más grandes en una licuadora y luego mezclaron cada plástico con cada tipo de suelo en una concentración del 0.4% en peso. En combinación con un control libre de plástico para cada tipo de suelo, se obtuvieron 15 combinaciones únicas de suelo y microplásticos.

Los autores vertieron cada mezcla en un cilindro metálico conectado a un dispositivo de succión para ver la rapidez con la que la succión extraía el agua del suelo. Realizaron la prueba en suelo húmedo y seco, ya que el nivel de humedad también influye en la rapidez con la que el agua se drena a través del suelo.

Desenterrando una relación matizada

Los cuatro microplásticos alteraron las tasas de flujo del agua en al menos uno de los suelos, pero la magnitud y la dirección del efecto variaron considerablemente. Por ejemplo, las fibras de poliéster, comúnmente desprendidas de algunos tipos de ropa, aumentaron la velocidad a la que fluía el agua a través de un suelo en más de un 50% cuando estaba húmedo, pero redujeron la tasa de flujo en más de un 50% en condiciones secas.

“Es muy difícil hacer una afirmación general sobre cómo cambia el suelo con los microplásticos.”

“Todos los resultados dependen del contexto”, afirma Rosolino Ingraffia, científico especializado en suelos de la Università degli Studi di Palermo en Italia, que no participó en la investigación. “Es muy difícil hacer una afirmación general sobre cómo cambia el suelo con los microplásticos”.

Otro estudio reciente en el que Neubert participó como coautora mostró cómo las diferencias en las tasas de flujo podrían traducirse en la agricultura. Ella cultivó plantas de trigo en los mismos tres tipos de suelo con y sin dos microplásticos: polietileno y poliéster. Los resultados fueron igualmente complicados, ya que el plástico añadido aumentaba, disminuía o no afectaba al crecimiento de las raíces, dependiendo de la combinación.

La concentración de plástico del 0.4% utilizada en ambos estudios es mucho mayor que la que albergan la mayoría de los campos agrícolas en la actualidad, según Neubert e Ingraffia. Por ejemplo, las tierras cultivables que han sido tratadas con biosólidos durante una década presentan concentraciones más cercanas al 0.002%. Sin embargo, los cálculos basados en la tasa actual de acumulación de microplásticos sugieren que muchas zonas podrían alcanzar esta concentración del 0.4% en 50 o 60 años, añadió Ingraffia.

Neubert espera que su investigación dé lugar a regulaciones que impidan que los microplásticos alcancen esos niveles. Alemania planea eliminar progresivamente el uso de lodos de depuradora ricos en nutrientes como fertilizantes en la mayoría de los campos agrícolas, en parte debido a la preocupación por la contaminación plástica, afirmó. Un estudio identificó esta práctica como una de las principales fuentes de microplásticos en el suelo de Alemania.

Es importante mantener el plástico fuera del suelo porque “aún no sabemos qué consecuencias tiene para nuestros suelos”, dijo Neubert.

—Mark DeGraff (@markr4nger.bsky.social), Escritor científico

This translation by Saúl A. Villafañe-Barajas (@villafanne) was made possible by a partnership with Planeteando and Geolatinas. Esta traducción fue posible gracias a una asociación con Planeteando y Geolatinas.

Text © 2026. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Ancient Tethys Ocean shaped Central Asia's landscape, study suggests

Phys.org: Earth science - Wed, 01/14/2026 - 14:09
New research from Adelaide University suggests the power of the ancient Tethys Ocean might have shaped Central Asia's topography during the Cretaceous period.

Where the Tianshan Will Break Next: Strain, Slip, and Seismic Hazard

EOS - Wed, 01/14/2026 - 14:00
Editors’ Highlights are summaries of recent papers by AGU’s journal editors. Source: Geophysical Research Letters 

The Tianshan Mountains in Central Asia have produced more than 100 large earthquakes in the past three centuries, showing that many faults in the region are still active. Chang et al. [2025] use the complete set of available GNSS (satellite-based positioning) measurement data, from 936 stations, to map how the crust is currently deforming. From these measurements, surface strain rates are calculated and, using novel inversion methods, an estimate of the seismic potential can be provided.

The authors find that most deformation (about 70%) is concentrated in the western Tianshan, where mapped faults accommodate roughly 60% of this strain. By comparing these results with the history of past earthquakes, the study identifies 20 fault segments with a “deficit”, that is, capable of producing future earthquakes of magnitude 7 or larger.

This work provides the first region-wide model of slip deficit and seismic potential for Tianshan and offers information that can directly improve seismic hazard assessments in Central Asia. The findings are especially timely following the 2024 Mw 7.0 Wushi earthquake.

Citation: Chang, F., Fang, J., Dong, S., Yin, H., Rollins, C., Elliott, J. R., & Hooper, A. J. (2025). Geodetic strain rates, slip deficit rates, and seismic potential in the Tianshan, Central Asia. Geophysical Research Letters, 52, e2025GL118470. https://doi.org/10.1029/2025GL118470   

—Fabio A. Capitanio, Editor, Geophysical Research Letters

Text © 2026. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Crop droughts set to worsen—even as rainfall increases

Phys.org: Earth science - Wed, 01/14/2026 - 10:00
Europe and western North America will experience more frequent and severe crop droughts as Earth warms, even in places where yearly rainfall increases.

Seismic Tomography of Aluto Volcano: Insights into Subsurface Fluid Distribution

Geophysical Journal International - Wed, 01/14/2026 - 00:00
SummaryUnderstanding subsurface fluid distribution in volcanic reservoirs is critical for geothermal energy development, critical mineral exploration, and forecasting eruptions. Here, we use travel-time tomography to image the seismic velocity structure beneath Aluto volcano, the first pilot geothermal project in Ethiopia, located in the Main Ethiopian Rift. Using seismic data recorded from January 2012 to January 2014, we invert for the 3D P-wave (Vp), S-wave (Vs), and Vp/Vs ratio. To reduce the non-uniqueness in interpretation, we also compare our results with previously published work on attenuation tomography and magnetotelluric images. Elevated Vp/Vs ratios (at 0 km below sea level (bsl)) around productive geothermal wells suggest high fluid content and/or elevated temperature. Vp/Vs values above 1.8 are observed along the caldera rims and hydrothermal vents, indicating fault and fracture systems as primary fluid conduits. High Vp/Vs below 6 km bsl likely reflects high-temperature areas or the presence of partial melt. In contrast, low Vp/Vs (<1.5), low Vp, and average to high Vs beneath the caldera at around 5 km bsl is interpreted as a crystallised body with over-pressurised gas volume formed during phase separation and transported upward through fractures and fault systems, accumulating at shallower levels. These findings highlight fluid pathways through the caldera rims and faults, with volatile-rich partial melt at greater depth beneath the caldera centre. Travel-time tomography thus offers a valuable constraints on subsurface fluid distribution and is valuable tool in geothermal exploration.

Signs of ancient life turn up in an unexpected place

Phys.org: Earth science - Tue, 01/13/2026 - 21:55
Dr. Rowan Martindale, a paleoecologist and geobiologist at the University of Texas at Austin, was walking through the Dadès Valley in the Central High Atlas Mountains of Morocco when she saw something that literally stopped her in her tracks.

Microbial genes could improve our understanding of water pollution

Phys.org: Earth science - Tue, 01/13/2026 - 19:16
Underground environments like soil and aquifers teem with microbial life. These tiny microbes play a big role in cycling nutrients and breaking down or transforming pollutants. However, scientists still struggle to reliably model how microbes grow and decay.

Melting glaciers may mix up waters more than we thought

Phys.org: Earth science - Tue, 01/13/2026 - 19:13
As marine-terminating glaciers melt, the resulting freshwater is released at the seafloor, which mixes with salty seawater and influences circulation patterns. As the oceans warm, it's growing increasingly important to study this process.

Marine sediments suggest glaciers retreated in sync across both hemispheres

Phys.org: Earth science - Tue, 01/13/2026 - 17:54
An international team of scientists has uncovered evidence glaciers in the Southern and Northern hemispheres were synchronous during the last ice age.

Sailboat measurements improve estimates of ocean CO₂ uptake

Phys.org: Earth science - Tue, 01/13/2026 - 17:06
During training cruises and regattas, sailors collect valuable data for climate research at sea. A study appearing in Science Advances showed that this data can help improve estimates of the marine carbon sink.

How the Tibetan Plateau-Himalayan uplift shaped Asian summer monsoons

Phys.org: Earth science - Tue, 01/13/2026 - 16:05
Research from Monash University reveals the climate history behind Asia's summer monsoon—Earth's most influential climate system. In a new study published in npj Climate and Atmospheric Science, an international team of researchers led by Monash University has uncovered the pivotal role of the Tibetan Plateau's uplift in shaping Asia's iconic summer monsoon.

Melting Glaciers Mix Up Waters More Than We Thought

EOS - Tue, 01/13/2026 - 14:12
Source: Journal of Geophysical Research: Oceans

As marine-terminating glaciers melt, the resulting freshwater is released at the seafloor, which mixes with salty seawater and influences circulation patterns. As the oceans warm, it’s growing increasingly important to study this process. Researchers do so using the framework of buoyant plume theory, which describes how rising freshwater interacts with denser salt water. Falling chunks of ice, which can easily crush boats, make working near glaciers dangerous. Thus, empirical data that can verify buoyant plume theory have rarely been collected.

Ovall et al. helped fill this gap by using remotely operated kayaks equipped with instruments to monitor the features of water flowing out from Xeitl Sít’ (also called LeConte Glacier) in southeastern Alaska. Their work marked the first time researchers took measurements of a plume’s size, shape, and velocity from directly above the upwelling plume.

The robotic kayaks allowed the researchers to observe the plume of rising freshwater without risking their own safety. Instruments aboard the kayaks sent acoustic signals downward, which bounced off particles within the rising plume to measure its velocity.

The volume and characteristics of the rising plume of water are substantially different from those predicted by buoyant plume theory, they found. The study’s measurements found that upwelling water moves at rates of more than a meter per second. Buoyant plume theory doesn’t capture the extent to which freshwater pulls salt water into the rising plume, leading researchers to underestimate the volume of the plume by as much as 50%. That mismatch likely arose in part because scientists underestimated how the shape of a glacier’s submarine portion affects the interaction between freshwater and ocean water. However, the authors note, there are likely other factors at play that have not yet been identified. (Journal of Geophysical Research: Oceans, https://doi.org/10.1029/2025JC022902, 2025)

—Saima May Sidik (@saimamay.bsky.social), Science Writer

Citation: Sidik, S. M. (2025), Melting glaciers mix up waters more than we thought, Eos, 106, https://doi.org/10.1029/2025EO250474. Published on 13 January 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Microbial Genes Could Improve Our Understanding of Water Pollution

EOS - Tue, 01/13/2026 - 14:12
Source: Journal of Geophysical Research: Biogeosciences

Underground environments like soil and aquifers teem with microbial life. These tiny microbes play a big role in cycling nutrients and breaking down or transforming pollutants. However, scientists still struggle to reliably model how microbes grow and decay.

Most studies of groundwater microbe communities focus on free-floating planktonic microbes, which make up less than 10% of an aquifer’s microbial population. The majority of microbes in groundwater are attached to sediment, making examination more difficult. Many studies are also done in labs, rather than on site.

Strobel et al. set out to study whether tracking biomarkers, such as specific genes produced by microbes during their life cycles, can improve models aimed at predicting how well microbes degrade pollutants in aquifers. They conducted research in southwestern Germany’s Ammer River floodplain, where groundwater sources with low oxygen levels and sediment with a high organic carbon content were ideal for microbial denitrification (the reduction of nitrate to nitrogen gas) to occur. The team constructed two 8.4-meter-deep wells surrounded by PVC casings and inserted seven microbial trapping devices (MTDs)—containers of sterilized sediment packed into a filter that served as a proxy for the microbial community in the aquifer matrix—into one of the wells. The MTDs remained submerged for 4.5 months prior to any experiments to allow the microbial community time to adapt to the environment and proliferate.

During a roughly 10-day period, while the MTDs were in the outflow well, the researchers injected nitrate-rich groundwater at the inflow well and extracted groundwater from the outflow well. The presence of nitrate, a pollutant that comes from sources such as fertilizer and sewage waste, spurred the microbial community into the process of denitrification. The team monitored the concentration of nitrate at the outflow and periodically withdrew an MTD to be transported to a lab for DNA analysis.

The growing abundance of key denitrification genes (napA and narG) in the earlier samples, followed by a decline in the later samples, indicated a dynamic microbial response to the added nitrate. The researchers’ efforts to use mathematical models to match their observations showed the importance of microbial growth during denitrification to control the extent of nitrate removal. The researchers note that though MTDs do not act as a perfect proxy for studying real aquifers, overall, the findings provide insight into the use of biomarkers to track biogeochemical processes, such as denitrification, in nature. (Journal of Geophysical Research: Biogeosciences, https://doi.org/10.1029/2025JG009181, 2025)

—Rebecca Owen (@beccapox.bsky.social), Science Writer

Citation: Owen R. (2026), Microbial genes could improve our understanding of water pollution, Eos, 107, https://doi.org/10.1029/2026EO260015. Published on 13 January 2026. Text © 2026. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Investigating a plume of bright blue in the wake of Hurricane Melissa

Phys.org: Earth science - Tue, 01/13/2026 - 14:03
Hurricane Melissa made landfall in Jamaica on October 28, 2025, as a category 5 storm, bringing sustained winds of 295 kilometers (185 miles) per hour and leaving a broad path of destruction on the island. The storm displaced tens of thousands of people, damaged or destroyed more than 100,000 structures, inflicted costly damage on farmland, and left the nation's forests brown and battered.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer