Feed aggregator

The ice-covered Aurora hydrothermal vent field, Gakkel Ridge, Arctic Ocean: ultramafic-influenced venting at a mafic axial volcano on Earth’s slowest spreading center

Earth and Planetary Science Letters - Wed, 11/19/2025 - 19:11

Publication date: 15 December 2025

Source: Earth and Planetary Science Letters, Volume 672

Author(s): Charles Lapointe, John W. Jamieson, Eoghan P. Reeves, Samuel I. Pereira, Hilary Corlett, Stefan Bünz, Eva Ramirez-Llodra

Influence of deep mantle thermal conductivity on the thermochemical evolution of Earth's mantle and core

Earth and Planetary Science Letters - Wed, 11/19/2025 - 19:11

Publication date: 15 December 2025

Source: Earth and Planetary Science Letters, Volume 672

Author(s): Jiacheng Tian, Diogo L. Lourenço, Paul J. Tackley

Calcite deposit from southern Nevada cave reveals 580,000 years of climate history

Phys.org: Earth science - Wed, 11/19/2025 - 19:11
Climate history recorded in a calcite deposit in a southern Nevada cave indicates that the hot, arid southwestern United States experienced significant shifts in temperature and rainfall over the last 580,000 years.

Rocks on faults can heal following seismic movement, scientists discover

Phys.org: Earth science - Wed, 11/19/2025 - 19:00
Earthquake faults deep in Earth can glue themselves back together following a seismic event, according to a new study led by researchers at the University of California, Davis. The work, published in Science Advances, adds a new factor to our understanding of the behavior of faults that can give rise to major earthquakes.

Echoes From the Past: How Land Reclamation Slowly Modifies Coastal Environments

EOS - Wed, 11/19/2025 - 16:43
Editors’ Vox is a blog from AGU’s Publications Department.

Land has been reclaimed for many centuries, and with the present-day demand for land, this process will continue in the future. The impact of such land reclamations has, up to now, been evaluated on a case-by-case basis, while studies integrating a wider range of land reclamation impacts is missing. Insights into the way tides interact with basin topography and the complex feedback mechanisms associated with fine-grained sediments is crucial to understanding the long-term response of coastal systems to a land reclamation.

A new article in Reviews of Geophysics synthesizes earlier findings on the effect of land reclamations on the coastal environment. Here, the lead author gives an overview of land reclamations, their impacts on coastal environments, and challenges for future research efforts.

Why and where is land reclaimed?

Fertile and low‐lying coastal landscapes are often densely populated because of their food supply (agriculture, aquaculture, and fisheries) and easy navigability (shipping lanes). At present 10% of the global population lives in Low Elevation Coastal Zones (LECZ’s; less than 10 meters above Mean Sea Level) and the population growth in LECZ’s is larger than the global average, especially in river deltas.

As this population pressure drives a continuous need for land, much of the low-lying land that was regularly inundated by the sea has been converted to agricultural land or urban environments. Especially the deltas of muddy rivers are suitable for reclamation, because of their shallow coastal waters and high sedimentation rates.

In our study we investigate how tide-influenced, typically muddy areas with wide intertidal areas, respond to reclamation by analyzing long-term datasets on tidal and bed level changes.

What kind of land reclamation techniques are used in such tide-influenced coastal environments?

Humans have reshaped deltas and other coastal areas for thousands of years. Traditional land reclamation techniques include the construction of wooden structures to dampen waves, allowing fine sediments to deposit. Eventually the area becomes vegetated and reclaimed through the construction of dikes. Although centuries old, this practice continues today, for example, in the Dutch-German Wadden Sea.

Figure 1: Traditional land reclamation technique in the Dutch-German Wadden Sea. Sediment is trapped by permeable brushwood groin fields (squares of 200 by 300 m) developing into saltmarshes. After construction of a dike the salt marshes are converted into agricultural land: the land protected by the sea dike in the picture above (lower right) was permanently reclaimed in 1969. Photo courtesy of Rijkswaterstaat Noord Nederland.

Other techniques include the construction of levees to convert wetlands into aquaculture or salt ponds (see Figure 1), or concrete revetments on the intertidal areas which gradually advance seaward. Such latter techniques are especially employed along the megadeltas of Asia. The most recent technique is the closure of tidal (sub)basins using barriers. Such closed basins may be converted into dry land (through pumping, creating polders) or remain reservoirs. In both cases, they profoundly influence the tidal dynamics of the coastal environment seaward of the closure for many decades or centuries.

How do these land reclamations influence coastal environments?

Land reclamations influence both the hydrodynamics (water levels and flow velocity) and the morphological response (erosion and sedimentation) of coastal environments. Both the hydrodynamic and morphological response are controlled by the reclamation type, the hydrodynamic conditions and sediment availability, and the location of the reclamation within the coastal environment.

Based on an analysis of all studies describing the effects of land reclamations, we have developed a classification scheme to explain the impact of reclamations on the coastal environment. A first major distinction herein is whether the reclamation takes place along an open coast, within a bay, or within an estuary. Open coast reclamations may lead to both erosion or sedimentation, likely depending on sediment availability. Reclamations in bays reduce tidal flows and mixing rates, and therefore lead to a reduction in water quality. The largest variability in response is observed in estuaries, where tides may amplify or dampen, and channels may erode or fill in (Figure 2).

Figure 2. Classification scheme conceptually describing how tides and bed levels respond to land reclamation. Credit: van Maren et al. [2025], Figure 9

Why do estuaries display such a large difference in response?

The large variability in estuarine response is caused by tide-topography interactions. Intertidal areas flanking an estuary reduce tidal energy and amplitude as the tide propagates through the estuary. Reclaiming land along the length of an estuary removes these intertidal areas and therefore leads to tidal amplification, especially if the estuary becomes more funnel-shaped (bottom left in Figure 2).

In contrast, reclaiming the most upstream intertidal areas of an estuary especially leads to a reduced tidal discharge (less water flowing in and out of the estuary with each tide) and therefore lower flow velocities (top right in Figure 2). As most estuaries are rich in sediments, such a reduction in flow velocities usually leads to sediment deposition. Reclaiming land at the mouth of an estuary only limitedly influences the tidal discharge, but the resulting smaller channel width leads to higher flow velocities and deepening of the channel (bottom right in Figure 2).

Why is the impact of land reclamation sometimes very large and prolonged?

Land reclamations may lead to an increase in tidal range of several meters but also to complete infilling of tidal channels. These adaptations are typically slow and may take decades to centuries. The impact is so large and takes such a long time because fine-grained sediments introduce a number of positive feedback mechanisms strengthening the effect of the original disturbance. We have identified five such feedback mechanisms. One example is the infilling of channels because upstream land reclamation reduces the tidal discharge (Figure 3).

Figure 3. Two positive feedback mechanism strengthening the initial response of tidal systems to land reclamation. Credit: van Maren et al. [2025], Figure 6 (modified)

As channel infilling continues, the tidal discharge further declines, promoting more sediment deposition. This infilling process slowly progresses in the seaward direction, in time leading to complete abandonment of a tidal system. Such impacts are most pronounced in branching tidal channel networks, such as the Ganges-Brahmaputra delta in Bangladesh. In such networks, infilling in one tidal channel may lead to large-scale erosion in another because of channel rearrangement, with its devastating effects illustrated in Figure 4.

Figure 4. Riverbank along a tidal channel in the Ganges-Brahmaputra delta eroding in response to land reclamation. Credit:  van Maren et al. [2023], Figure 13

Why are the effects of land reclamations relatively unknown?

The physical impact of land reclamations (changing tides, erosion, or deposition) are surprisingly poorly known. The ecological effects of land reclamations have been extensively studied, and these studies in turn synthesized in several reviews. The impact on tides and bed levels has received much less attention and has so far only been investigated in individual case studies, which do not reveal the full extent of land reclamation impacts. We believe that the number of studies are limited because (1) large amounts of land were reclaimed before data was collected; (2) the response time is slow and variable (and therefore changes are insufficiently correlated with a reclamation); and (3) many contemporary reclamations are executed simultaneously with other interventions (deepening of channels for navigation; reduction of sediment supply by upstream reservoirs) obscuring the effect of the reclamation.

What are key challenges for future research?

We have identified three key challenges for follow-up research. Firstly, the impact of reclamations is so large and prolonged because of a number of positive feedback mechanisms. A better understanding of such mechanisms is needed to explain historic changes but even more to predict future impacts of present-day land reclamations (especially tidal amplification which may influence high water level increase in the coming decades much more than sea level rise).

Secondly, we infer that land reclamation leads to higher suspended sediment concentrations in estuarine environments, negatively impacting coastal ecosystems but also being a key factor driving the positive feedback loops. However, studies relating suspended sediment dynamics to reclamations are limited.

And finally, more attention should be given to the long adaptation timescales. Present-day reclamations will impact their coastal environment for the coming decades to centuries. Forecasting how coastal systems will respond to rising sea levels, for example, is only possible with sufficient understanding of their slow response to existing reclamations.

—Bas van Maren (Bas.vanMaren@deltares.nl; 0000-0001-5820-3212), Delft University of Technology and Deltares, The Netherlands

Editor’s Note: It is the policy of AGU Publications to invite the authors of articles published in Reviews of Geophysics to write a summary for Eos Editors’ Vox.

Citation: van Maren, B. (2025), Echoes from the past: how land reclamation slowly modifies coastal environments, Eos, 106, https://doi.org/10.1029/2025EO255035. Published on 19 November 2025. This article does not represent the opinion of AGU, Eos, or any of its affiliates. It is solely the opinion of the author(s). Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Using AI to predict earthquakes: Machine learning detects subtle changes before lab-scale fault failures

Phys.org: Earth science - Wed, 11/19/2025 - 16:36
Predicting earthquakes has long been an unattainable fantasy. Factors like odd animal behaviors that have historically been thought to forebode earthquakes are not supported by empirical evidence. As these factors often occur independently of earthquakes and vice versa, seismologists believe that earthquakes occur with little or no warning. At least, that's how it appears from the surface.

Using 6,000-year-old data, scientists uncover why Europe may face 42 extra days of summer by 2100

Phys.org: Earth science - Wed, 11/19/2025 - 15:28
New research led by Royal Holloway reveals for the first time why Europe could gain more than an extra month of summer days by 2100 using climate data from the last millennia.

NZ's earliest climate change debate: The 150-year-old feud over glacial retreat

Phys.org: Earth science - Wed, 11/19/2025 - 14:58
Climate change may seem a uniquely 21st-century concern, but people have been wrestling with the idea for a long time.

Far beyond the climate crisis: COP30 must seek to build a new model of civilization

Phys.org: Earth science - Wed, 11/19/2025 - 14:55
Since 6 November 2025, Belém has become the center of attention for the entire planet for two weeks. COP30 is bringing together a record number of delegations, dozens of heads of state and intense public participation. President Lula transferred the government to the capital of Pará, symbolizing Brazil's commitment to the Amazon and the future of the global climate.

Millions at risk as Myanmar wells surpass WHO arsenic guidelines

Phys.org: Earth science - Wed, 11/19/2025 - 14:30
Twelve million people in Myanmar's Ayeyarwady Delta face serious long-term health risks from the harmful substance, arsenic, in their drinking water.

Key Driver of Extreme Winds on Venus Identified

EOS - Wed, 11/19/2025 - 14:15
Source: AGU Advances

Imagine the catastrophic winds of a category 5 hurricane. Now, imagine even faster winds of more than 100 meters per second, encircling the planet and whipping clouds across the sky, with no end in sight. This scenario would be astonishing on Earth, but it’s business as usual on Venus, where the atmosphere at cloud level rotates about 60 times faster than the planet itself—a phenomenon known as superrotation. In contrast, Earth’s cloud-level atmosphere rotates at about the same speed as the planet’s surface.

Prior research has explored the mechanisms driving atmospheric superrotation on Venus, but the details remain murky. New evidence from Lai et al. suggests that a once-daily atmospheric tidal cycle, fueled by heat from the Sun, contributes much more to the planet’s extreme winds than previously thought.

Rapid atmospheric rotation often occurs on rocky planets that, like Venus, are located relatively close to their stars and rotate very slowly. On Venus, one full rotation takes 243 Earth days. Meanwhile, the atmosphere races around the planet in a mere 4 Earth days.

To better understand this superrotation, the researchers analyzed data collected between 2006 and 2022 by the European Space Agency’s Venus Express satellite and the Japan Aerospace Exploration Agency’s Akatsuki satellite, which both studied Venus’s atmosphere by detecting how it bends radio waves. The research team also simulated superrotation using a numerical model of Venus’s atmosphere.

The analysis focused specifically on thermal tides—one of several atmospheric processes, alongside meridional circulation and planetary waves, whose interactions have previously been shown to sustain Venus’s superrotation by transporting momentum. Thermal tides are patterns of air movement that occur when sunlight heats air on the dayside of a planet. Venusian thermal tides can be broken into two major components: diurnal tides, which follow a cyclical pattern repeating once per Venusian day, and semidiurnal tides, which have two cycles per day.

Earlier research suggested that semidiurnal tides are the main thermal tide component involved in superrotation. However, this study—which includes the first analysis of thermal tides in Venus’s southern hemisphere—found that diurnal tides play a primary role in transporting momentum toward the tops of Venus’s thick clouds, suggesting diurnal tides are major contributors to the rapid winds.

Though the researchers note that further clarification of the contributions of diurnal tides is needed, the work sheds new light on Venus’s extreme winds and could aid meteorological research on other slowly rotating planets. (AGU Advances, https://doi.org/10.1029/2025AV001880, 2025)

—Sarah Stanley, Science Writer

Citation: Stanley, S. (2025), Key driver of extreme winds on Venus identified, Eos, 106, https://doi.org/10.1029/2025EO250436. Published on 19 November 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

New Tool Maps the Overlap of Heat and Health in California

EOS - Wed, 11/19/2025 - 14:14

A new tool aims to do for heat waves what Saffir and Simpson did for hurricanes.

CalHeatScore, an online mapping tool developed by the California Office of Environmental Health Hazard Assessment, ranks heat wave risk on a straightforward scale of 0 to 4. And just like the Saffir-Simpson scale for hurricane strength, CalHeatScore delivers its warnings days in advance. It’s designed to help Californians prepare for heat emergencies and uses socioeconomic factors to tailor information for each individual zip code.

“[CalHeatScore] gives you a warning for your community that reflects the characteristics of your community.”

“It gives you a warning for your community that reflects the characteristics of your community,” explained John Molitor, an environmental data scientist at Oregon State University who helped build the tool.

The hyperlocal method provides meteorologists, emergency managers, and the public with a shared understanding of risk during California’s extreme heat. Molitor and his colleagues will share their work at AGU’s Annual Meeting 2025 in New Orleans on 16 December.

Scorching in Sacramento

CalHeatScore was born during a heat wave. Legislators had been pushing for a warning system for months, and the bill was finally approved in September 2022 during a 10-day heat wave that broke 1,500 temperature records across California. The heat wave caused 395 excess deaths in the state, 4 times the toll of California’s deadliest wildfire, according to the Los Angeles Times.

The tool—officially dubbed the California Communities Extreme Heat Scoring System and launched in December 2024—was designed to prevent future heat deaths by providing a streamlined and site-specific warning system. It includes targeted public health information, like community heat risk and the locations of the nearest public cooling centers.

Building a Model

CalHeatScore draws from a range of data sources, recognizing that heat risk is more than just temperature.

First, developers established a baseline using temperature data and emergency room visits from 2008 to 2018, looking specifically for diagnoses that increase with heat. The current operational model uses zip codes as a proxy for socioeconomic data, while a second-stage model will add specific population data to pinpoint communities of concern.

Other warning systems look at empirical distributions of heat, Molitor explained, but CalHeatScore looks for causal effects. The interdisciplinary team of physicians, health experts, and data scientists is specifically looking for drivers of heat impacts.

“People experience heat very differently through space and time,” Molitor said. A community with swimming pools and air-conditioning will experience a 100°F day different than a neighborhood of pavement and parking lots. Similarly, indoor office workers are protected from the heat in a way roofers, gardeners, and carpenters aren’t. By considering factors like age brackets and average income, CalHeatScore can determine the heat-related health risk for a community.

The platform’s clickable, searchable map is built on spatial modeling. “What happens in one zip code is going to be highly informed by what happens in nearby zip codes,” Molitor said. Multilevel modeling “is allowing us to take the data and drill down into all these little zip codes and come up with an appropriate heat warning system for each,” he said.

Decisionmaking Data

All that complexity results in a very simple scale. Heat risk is ranked 0 (low) through 4 (severe) and provided for the next 7 days.

That’s a useful approach, said Ashish Sharma, an atmospheric scientist at the University of Illinois Urbana-Champaign who was not involved in the project.

“If we look at decisionmaking, it’s binary. Either you act upon it, or you don’t,” he said. “Combining this information at the zip code level can really improve decisionmaking.”

But while the tool has a lot of strengths, the current map seems geared more for agencies and governments than the public, he noted. He hopes future iterations are more user-friendly.

To that end, the CalHeatScore team is exploring options to develop a mobile app. That would be a helpful addition, said Amy Cilimburg, the director of Climate Smart Missoula who’s also worked on local heat mapping. A phone app could allow a football coach on the sidelines or a daycare director on the playground to plan their week around the heat.

“There is a lot of utility and strength in a hyper-local map,” she said. The next test is making sure people know about the tool and start making decisions based on it.

Expanding the Map

The developers aim to expand awareness at the AGU Annual Meeting, sharing their work with an international audience. CalHeatScore is replicable. Any state or country with similar data could develop a 7-day warning system.

“What we have here is really advanced, and we’d like to be doing this for other jurisdictions.”

“What we have here is really advanced, and we’d like to be doing this for other jurisdictions,” said David Eisenman, a project principal investigator, professor of medicine, and codirector of the Center for Healthy Climate Solutions at the University of California, Los Angeles.

The blend of health outcomes, temperature levels, and demographic data is “a really unique approach,” Eisenman said.

CalHeatScore is built with health outcomes and heat vulnerability in mind. When the next heat wave rolls through California, residents will have a new way to communicate and tolerate the temperature.

—J. Besl (@j_besl, @jbesl.bsky.social), Science Writer

20 November 2025: This article has been updated to correct the role of David Eisenman.

Citation: Besl, J. (2025), New tool maps the overlap of heat and health in California, Eos, 106, https://doi.org/10.1029/2025EO250432. Published on 19 November 2025. Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Without US satellites, 'we go dark', tells climate monitor

Phys.org: Earth science - Wed, 11/19/2025 - 10:32
US budget cuts risk creating blind spots in Earth monitoring systems that would imperil weather forecasting and climate research for years to come, the deputy chair of a key UN-backed climate monitoring body warned in an AFP interview.

Team studies beryllium-7 variations over Antarctic regions of the Southern Ocean

Phys.org: Earth science - Wed, 11/19/2025 - 00:20
Beryllium-7 is a radioactive isotope of beryllium produced by cosmic rays in the atmosphere. A Japanese research team has explored, over space and time, how the beryllium-7 is transported from the atmosphere to Earth's surface. Their goal was to better understand the mechanisms of atmospheric mixing on Earth. Their research is published in the Journal of Geophysical Research: Atmospheres on October 14, 2025.

Dependence of Archie’s Saturation Exponent on Hydrate Saturation and Hydrate Morphology: A Study from Fluid-displacing and Fracture-filling Hydrate Reservoirs

Geophysical Journal International - Wed, 11/19/2025 - 00:00
SummaryAccurate quantification of natural gas hydrate is essential for resource potential and climate impact assessment. Archie’s empirical equations are commonly used to quantify hydrates from electrical resistivity measurements. One dominant Archie equation parameters, i.e. saturation parameter (n), is generally assumed to be constant for different hydrate saturation range for a given reservoir. However, n actually varies with hydrate saturation and morphology, and the exact relationship between n and hydrate saturation or morphology still remains poorly understood, leading to great uncertainties in resistivity-derived saturations. Here we investigate the effect of hydrate saturation and dominant hydrate morphologies on n using well logs from four sites in both fine and coarse-grained sediments: two sites with fluid-displacing hydrate (site W11 from the third Guangzhou Marine Geologic Survey; and Mallik 5L-38 well in the Mackenzie Delta) and two sites with fracture-filling hydrate (site 10 from Indian National Gas Hydrate Program Expedition 01; and site W08 from the second Guangzhou Marine Geologic Survey). We calculated n value using Archie’s law with hydrate saturation determined from velocity. Our results demonstrate a clear negative relationship between hydrate content and n value. Moreover, n estimates from two fracture-filling sites show greater variability compared to fluid-displacing sites. At a fracture-filling hydrate site, site 10, various trends between n and hydrate saturation are possibly caused by the distint gas compositions of hydrate. Our results demonstrate that significant effects of hydrate morphology and saturation on n that are site specific, and can be used to enhance the accuracy of gas hydrate quantification.

Bidirectional Physics-Constrained Full Waveform Inversion: Reducing Seismic Data Dependency in Velocity Model Building

Geophysical Journal International - Wed, 11/19/2025 - 00:00
SummaryFull-waveform inversion (FWI) is a method that utilizes seismic data to invert the physical parameters of subsurface media by minimizing the difference between simulated and observed waveforms. Due to its ill-posed nature, FWI is susceptible to getting trapped in local minima. Consequently, various research efforts have attempted to combine neural networks with FWI to stabilize the inversion process. This study presents a bidirectional physics-constrained full waveform inversion (BP-FWI) framework that leverages transfer learning by pre-training on simple initial models and utilizing the results. Additionally, it employs FWI gradients to co-optimize both the neural network and the adaptive residual learning module under bidirectional physics constraints. By eliminating the reliance on a large amount of manually constructed synthetic datasets, the proposed training strategy addresses the challenge of data dependency. Furthermore, through the joint optimization strategy guided by bidirectional constraints, the neural network is able to focus on integrating physically-informed prior knowledge into global stratigraphic representations, while the adaptive residual learning module specializes in learning residual mappings from the network’s output, thereby capturing subtle inter-layer velocity variations in local geological structures. Evaluating the method on two benchmark models under various conditions, including absent low-frequency data, noise interference, non-uniform receiver configurations, and differing initial models, along with corresponding ablation experiments, consistently demonstrates the superiority of the proposed approach.

Why mysterious structures within Earth's mantle hold clues to life here

Phys.org: Earth science - Tue, 11/18/2025 - 22:07
For decades, scientists have been baffled by two enormous, enigmatic structures buried deep inside Earth with features so vast and unusual that they defy conventional models of planetary evolution.

A new way for coastal planners to explore the costs of rising seas

Phys.org: Earth science - Tue, 11/18/2025 - 21:04
Water levels are creeping upward on shorelines across the world, and decision-making systems are not keeping up. One barrier to including sea level rise projections in adaptation plans is limited information on the full range of possible outcomes.

A New Way for Coastal Planners to Explore the Costs of Rising Seas

EOS - Tue, 11/18/2025 - 14:18
Source: Earth’s Future

Water levels are creeping upward on shorelines across the world, and decisionmaking systems are not keeping up. One barrier to including sea level rise projections in adaptation plans is limited information on the full range of possible outcomes.

Substantial scientific uncertainty exists around how quickly ice sheets could collapse. This uncertainty means high-end sea level rise projections have been particularly tough for coastal planners to incorporate into their risk assessments for critical infrastructure such as nuclear power plants. In the United Kingdom, current official guidance states that planners should consider a worst-case scenario of 1.9 meters of sea level rise by 2100, but recent scientific evidence suggests that worse scenarios are plausible. Given the broad range and large uncertainty surrounding high-end projections, new tools for decisionmakers are sorely needed.

Weeks et al. present a new decisionmaking framework that includes a “decision-game” approach. This decision-game approach involves a time-step based progression through a plausible sea level rise scenario, allowing participants to prime long-term thinking skills, analyze impacts of previous decisions, and test their strategies for adaptation. The new framework, coproduced by the United Kingdom’s Met Office and Environment Agency, also incorporates scientific advances that have taken place since the last major update to high-end sea level rise projections in 2009.

To test their framework, the researchers held a decision-gaming workshop that was attended by consultants, coastal risk management experts, and climate change advisers. The researchers presented a hypothetical U.K. coastal city to the participants and gradually revealed the local sea level change over the 21st century and beyond for a high-end scenario. Participants held nuanced discussions and gained a deep understanding of the ramifications that their adaptation planning decisions would have over time, the researchers report. With widespread deployment, the framework could help coastal communities build resilience against rising waters. The researchers also note that the approach could be adapted to help make decisions about managing other climate hazards in various regions. (Earth’s Future, https://doi.org/10.1029/2025EF006086, 2025)

—Saima May Sidik (@saimamay.bsky.social), Science Writer

Citation: Sidik, S. M. (2025), A new way for coastal planners to explore the costs of rising seas, Eos, 106, https://doi.org/10.1029/2025EO250375. Published on 18 November 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Ocean Tunneling May Have Set Off an Ancient Pacific Cooldown

EOS - Tue, 11/18/2025 - 14:17

About 1.5 million years ago, the mid-depth waters of the tropical Pacific Ocean suddenly grew cooler. The change came rapidly, and it spread across thousands of kilometers.

Before then, Earth’s climate had been relatively stable. Cycles of ice ages and interglacial periods had already begun, but they were shorter, and the tropical Pacific remained warm. Its surface temperature barely changed even as polar ice advanced and retreated.

So how did the waters suddenly become cold?

“We’re usually interested in the mid-depth waters—not the surface, not the deep ocean—because that’s where the music is.”

A new study published in Communications Earth and Environment suggests that the cold water came from the Southern Ocean and traveled northward through ocean tunnels into the tropics. An ocean tunnel, the research explains, describes a “channel for water masses that connects different oceanic and consequently, atmospheric regions.”

“We’re usually interested in the mid-depth waters—not the surface, not the deep ocean—because that’s where the music is,” said Jacek Raddatz, a climate scientist at GEOMAR Helmholtz Centre for Ocean Research Kiel, in Germany, and first author of the study.

“The Pacific is the largest ocean and important for global circulation and climate,” he continued. “That’s why we focused our study on the tropical Pacific.”

Tunnels of Colder, Fresher Water

The researchers analyzed tests of planktonic foraminifera (forams) recovered from a sediment core drilled from the Manihiki Plateau, a submerged ridge in the tropical South Pacific. The plateau is located at the eastern edge of the Western Pacific Warm Pool, the region with the highest ocean temperatures in the world.

The team measured magnesium-to-calcium ratios and oxygen isotope values in tests of two species of forams. One species lived near the surface, and the other lived about 400 meters down. With those values, the scientists reconstructed past temperatures and salinity spanning a period from about 2.5 million to 1 million years ago.

“At the Manihiki Plateau, we see that around 1.5 million years ago, there’s a drop in both temperature and salinity,” said Raddatz.

This timing matched a major growth of Antarctic ice.

The new research indicates cold Antarctic water traveled northward through the Pacific’s mid-depths as a pulse, a process known as ocean tunneling.

“Cold water forms off places like Chile, Peru, and California and slowly sinks. It moves toward the equator beneath the surface,” explained Matt Luongo, a climate scientist and postdoctoral researcher at the University of Washington, in Seattle. He was not involved in the study. “If that water becomes cooler or fresher, then maybe…10 to 20 years later, the equator ends up bringing up cooler water too. That’s basically how ocean tunneling connects distant parts of the ocean.”

Raddatz and his fellow researchers also examined how the cooling was related to Earth’s orbital cycles: eccentricity, or the shape of Earth’s orbit; obliquity, or the angle at which Earth’s axis is tilted with respect to its orbital plane; and precession, or the direction Earth’s axis is pointed.

They found a consistent pattern. “We see the same increase in obliquity-related signals in Antarctic ice volume, in midlatitude temperature reconstructions, and in our salinity record,” Raddatz said. “That led us to conclude that they’re all connected through the same mechanism.”

Raddatz and his colleagues think the cooling may have been an early step toward the period when Earth’s ice ages grew longer and more intense. “We think this might be a first step that led, maybe, to the Mid-Pleistocene Transition.”

Interesting, but Not Definitive

Luongo agreed the study shows that South Pacific waters did chill out and freshen up about 1.5 million years ago and that the source of these changes came from the Southern Hemisphere. The research is “interesting, because it helps explain why the thermocline in the equatorial Pacific is so cold and fresh,” he said.

But he also cautioned against directly linking the changes to Antarctic ice growth. “It’s suggestive of the ice sheet, the wiggles match, but it also could be something else,” said Luongo. “There are a lot of things that can cause freshening of the waters.”

Raddatz and his colleagues plan to extend their work to other ocean basins. They want to add nutrient and carbon measurements to build a fuller picture of how mid-depth waters evolve. “If we understand these variations,” he said, “we can also explain the growth and decline of biodiversity hot spots in the deep sea.”

—Larissa G. Capella (@CapellaLarissa), Science Writer

Citation: Capella, L. G. (2025), Ocean tunneling may have set off an ancient Pacific cooldown, Eos, 106, https://doi.org/10.1029/2025EO250428. Published on 18 November 2025. Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer