Physical Review E (Plasma physics)

Syndicate content
Recently published articles in Phys. Rev. E in the Table of Content section "Plasma physics"
Updated: 16 hours 57 min ago

Efficient laser-plasma acceleration of protons via near-critical mass limited targets

Tue, 09/09/2025 - 10:00

Author(s): Johannes Gebhard, Peter Hilz, Felix Balling, Joey Kalis, Martin Speicher, Leonard Doyle, Alexander Sävert, Georg Schäfer, Pooyan Khademi, Bin Liu, Matt Zepf, and Jörg Schreiber

Isolated micro-targets are a promising avenue to high-performance laser-driven proton and ion accelerators due to their ability to confine the coupled laser energy to a small volume and small number of particles. Experimental results on proton emission from levitated plastic micro-spheres with an in…


[Phys. Rev. E 112, 035204] Published Tue Sep 09, 2025

Two-stage linear filamentation growth of laser-produced proton beams in dense plasmas

Tue, 09/09/2025 - 10:00

Author(s): Wang-Wen Xu, Zhang-Hu Hu, Hao-Yuan Li, Jie-Jie Lan, and You-Nian Wang

We report in this work the current filamentation instability of laser-produced proton beams in a regime where the plasma collision frequency is much smaller than the plasma oscillation frequency but larger than the growth rate of the instability. In this regime, the plasma electron temperature incre…


[Phys. Rev. E 112, 035205] Published Tue Sep 09, 2025

Application of a spherically averaged pair potential in <i>ab initio</i> path integral Monte Carlo simulations of a warm dense electron gas

Mon, 09/08/2025 - 10:00

Author(s): Tobias Dornheim, Thomas M. Chuna, Hannah M. Bellenbaum, Zhandos A. Moldabekov, Panagiotis Tolias, and Jan Vorberger

Spherically averaged periodic pair potentials offer the enticing promise to provide accurate results at a drastically reduced computational cost compared to the traditional Ewald sum. In this work, we employ the pair potential by Yakub and Ronchi [J. Chem. Phys. 119, 11556 (2003)] in ab initio path …


[Phys. Rev. E 112, 035203] Published Mon Sep 08, 2025

Minimizing phase-space energies

Fri, 09/05/2025 - 10:00

Author(s): Michael Updike, Nicholas Bohlsen, Hong Qin, and Nathaniel J. Fisch

A primary technical challenge for harnessing fusion energy is to control and extract energy from a nonthermal distribution of charged particles. The fact that phase space evolves by symplectomorphisms fundamentally limits how a distribution may be manipulated. While the constraint of phase-space vol…


[Phys. Rev. E 112, 035202] Published Fri Sep 05, 2025

Convective nature of the stimulated Raman side scattering in inertial confinement fusion

Fri, 09/05/2025 - 10:00

Author(s): F.-X. Zhou, C.-W. Lian, R. Yan, Y. Ji, J. Li, Q. Jia, and J. Zheng

Absolute growth of stimulated Raman side scattering (SRSS) in inertial confinement fusion appears to be absent in experiments. Based on simulations the authors find that absolute growth of SRSS occurs only in the limit of an infinite laser beam width. This finding may have implications for the design of experiments.

#AdvancingField #OpenDebate


[Phys. Rev. E 112, L033201] Published Fri Sep 05, 2025

Subharmonic Shapiro steps in depinning dynamics of a two-dimensional solid dusty plasma modulated by one-dimensional nonlinear deformed periodic substrates

Tue, 09/02/2025 - 10:00

Author(s): Zhaoye Wang, Nichen Yu, Ao Xu, Chen Liang, C. Reichhardt, C. J. O. Reichhardt, and Yan Feng

Langevin dynamical simulations are performed to investigate the depinning dynamics of a two-dimensional (2D) solid dusty plasma, which is modulated by one-dimensional (1D) nonlinear deformed periodic substrates, and also driven by the combination of the DC and AC forces. As the DC driving force incr…


[Phys. Rev. E 112, 035201] Published Tue Sep 02, 2025

Anomalous charge and energy transfer in a nonisothermal plasma and possibility of calculation of current density in hollow cathodes

Tue, 08/26/2025 - 10:00

Author(s): A. A. Shelkovoy and S. A. Uryupin

Without imposing additional restrictions on the magnitude of induced scattering of waves by ions, the numerical solution of the nonlinear integral equation for the ion-acoustic waves distribution function over the angles of the wave vector is obtained. This solution complements the analytical and nu…


[Phys. Rev. E 112, 025210] Published Tue Aug 26, 2025

Unified description of kappa-type velocity distributions

Tue, 08/26/2025 - 10:00

Author(s): J. A. S. Lima and M. H. Benetti

An extension of Maxwell's original prescription for an ideal gas is adopted to derive a broad class of kappa-type velocity distributions, encompassing both fat and short-tailed forms. Within this general framework, a physically consistent fat-tailed kappa distribution is identified that accurately f…


[Phys. Rev. E 112, 025211] Published Tue Aug 26, 2025

Quasilinear thermalization of collision-poor plasmas by noncollective fluctuations

Thu, 08/21/2025 - 10:00

Author(s): R. Schlickeiser and M. Kröger

The observed Maxwellian velocity distribution functions in plasmas and the fact that the rate of elastic electron-electron collisions is many orders of magnitude smaller than the electron plasma frequency have been a long-standing puzzle. Here, we present a mechanism for efficient thermalization in …


[Phys. Rev. E 112, 025209] Published Thu Aug 21, 2025

Fast matter-antimatter separation via Weibel-induced plasma filamentation

Wed, 08/20/2025 - 10:00

Author(s): Oliver Mathiak, Lars Reichwein, and Alexander Pukhov

The separation of matter and antimatter in a plasma can be driven by the growth of the Weibel instability. The authors show this effect in a plasma of protons and antiprotons with a relativistic stream of electrons and positrons, by means of particle-in-cell simulations supported by analytical considerations.

#AdvancingField #OpenDebate


[Phys. Rev. E 112, 025208] Published Wed Aug 20, 2025

Quantum Ornstein-Zernike theory for two-temperature two-component plasmas

Mon, 08/18/2025 - 10:00

Author(s): Zachary A. Johnson, Nathaniel R. Shaffer, and Michael S. Murillo

Laboratory plasma production almost always preferentially heats either the ions or electrons, leading to a two-temperature state. In this state, density functional theory molecular dynamic simulation is the state of the art for modeling bulk material properties. We construct a statistical mechanics …


[Phys. Rev. E 112, 025207] Published Mon Aug 18, 2025

Spatial distribution of plasma parameters in a hollow cathode discharge not limited by walls: Experiment and modeling

Thu, 08/14/2025 - 10:00

Author(s): A. V. Bernatskiy, I. I. Draganov, N. A. Dyatko, I. V. Kochetov, V. V. Lagunov, and V. N. Ochkin

Experimental and numerical studies of the features of the spatial distribution of plasma parameters in a discharge not limited by walls were performed. A discharge supported by a hollow cathode in helium at low pressure was ignited in a chamber with dimensions much larger than the dimensions of the …


[Phys. Rev. E 112, 025204] Published Thu Aug 14, 2025

Amplification of turbulence through multiple planar shocks

Thu, 08/14/2025 - 10:00

Author(s): Michael F. Zhang, Seth Davidovits, and Nathaniel J. Fisch

We study the amplification of isotropic, incompressible turbulence through multiple planar, collisional shocks, using analytical linear theory. There are two limiting cases we explore. The first assumes shocks occur rapidly in time such that the turbulence does not evolve between shocks. Whereas the…


[Phys. Rev. E 112, 025205] Published Thu Aug 14, 2025

Measuring the growth of Alfvén wave parametric decay instability using counter-propagating waves: Theory and simulations

Thu, 08/14/2025 - 10:00

Author(s): Feiyu Li, Seth Dorfman, and Xiangrong Fu

The parametric decay instability (PDI) of Alfvén waves—where a pump Alfvén wave decays into a backward-propagating child Alfvén wave and a forward ion acoustic wave—is a fundamental nonlinear wave-wave interaction and holds significant implications for space and laboratory plasmas. However, to date …


[Phys. Rev. E 112, 025206] Published Thu Aug 14, 2025

Kinetic full-wave analysis of injected electromagnetic wave in an inhomogeneous hot plasma

Thu, 08/07/2025 - 10:00

Author(s): Shabbir A. Khan and Atsushi Fukuyama

Linear absorption of electromagnetic wave injected in a hot plasma is usually associated with non-normal incidence; here, it is shown that absorption can take place at normal incidence as well. By developing a kinetic model based on integral form of dielectric tensor in the presence of static electr…


[Phys. Rev. E 112, L023202] Published Thu Aug 07, 2025

Piecewise omnigenous stellarators with zero bootstrap current

Wed, 08/06/2025 - 10:00

Author(s): Iván Calvo, José Luis Velasco, Per Helander, and Félix I. Parra

Until now, quasi-isodynamic magnetic fields have been the only known stellarator configurations that, at low collisionality, give small radial neoclassical transport and zero bootstrap current for arbitrary plasma profiles, the latter facilitating control of the magnetic configuration. The recently …


[Phys. Rev. E 112, L023201] Published Wed Aug 06, 2025

Demonstration of x-ray fluorescence spectroscopy as a sensitive temperature diagnostic for high-energy-density physics experiments

Tue, 08/05/2025 - 10:00

Author(s): M. J. MacDonald, H. A. Scott, K. H. Ma, S. R. Klein, T. F. Baumann, R. W. Falcone, K. B. Fournier, C. M. Huntington, E. Johnsen, C. C. Kuranz, E. V. Marley, A. M. Saunders, M. P. Springstead, P. A. Sterne, M. R. Trantham, and T. Döppner

We present the use of x-ray fluorescence spectroscopy (XFS) to a sensitive temperature diagnostic in shocked foams at temperatures of 30–75 eV. Cobalt-doped foams were shock compressed using a planar drive at the OMEGA laser facility and photo-pumped with a Zn Heα x-ray source. Analysis of the resul…


[Phys. Rev. E 112, 025203] Published Tue Aug 05, 2025

Relaxation pathways in x-ray free-electron-laser heated iron

Fri, 08/01/2025 - 10:00

Author(s): L. Ansia, P. Velarde, M. Fajardo, and G. O. Williams

Nonthermal photoionized plasmas are now established in the laboratory and require models that treat the atomic processes and electron distribution self-consistently. We investigate the effects of inelastic thermalization in iron under intense x-ray irradiation using the atomic model BigBarT, suited …


[Phys. Rev. E 112, 025201] Published Fri Aug 01, 2025

Impact of super-Gaussian electron distributions on plasma K-shell emission

Fri, 08/01/2025 - 10:00

Author(s): H. P. Le, E. V. Marley, and H. A. Scott

Electron distributions in laser-produced plasmas will be driven toward a super-Gaussian distribution due to inverse bremsstrahlung absorption [Langdon, Phys. Rev. Lett. 44, 575 (1980)]. Both theoretical and experimental evidence suggest that fundamental plasma properties are altered by the super-Gau…


[Phys. Rev. E 112, 025202] Published Fri Aug 01, 2025

Experimental study of the rotation characteristics of magnetically driven vacuum-arc cathode spots

Wed, 07/30/2025 - 10:00

Author(s): Yu-Xi Liu, Jin-Yue Geng, Hai-Xing Wang, Hao Yan, Xu-Hui Liu, Su-Rong Sun, Ao-wei Liu, and Tao Wu

Achieving uniform, stable, and reliable erosion of electrode materials is crucial for enhancing the performance and lifespan of vacuum-arc devices. This study investigates the rotation and erosion characteristics of cathode spots on Cu and Ti cathodes with various applied magnetic fields. The result…


[Phys. Rev. E 112, 015213] Published Wed Jul 30, 2025

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer