A seemingly unending sheet of ice covers most of Antarctica, but there’s a hidden network of liquid lakes lying beneath. These subglacial lakes affect the flow of the Antarctic Ice Sheet, which in turn dictates how rapidly ice enters the ocean and contributes to global sea level rise.
Researchers recently discovered 85 previously unknown subglacial lakes in Antarctica in which water levels are changing. These results, which boost the number of active lakes tabulated under the White Continent by nearly 60%, were published in Nature Communications.
Way, Way Down
“The whole column of ice above the lake needs to go somewhere.”
Subglacial lakes exist at the interface between the bottom of the ice and the continent’s underlying bedrock. The average thickness of the Antarctic Ice Sheet is roughly 4,000 meters, so subglacial lakes in Antarctica are way down there, said Sally Wilson, lead author of the paper and a glaciologist at the University of Leeds in the United Kingdom. “These lakes are really deep.”
Their waters don’t freeze, thanks to gentle frictional heating from the movement of the Antarctic Ice Sheet and also from heat imparted from Earth’s interior.
Wilson and her colleagues recently used satellite data to look for signs of Antarctic subglacial lakes. The researchers mined archival data collected by CryoSat-2, a European Space Agency satellite launched in 2010 to measure changes in the thickness of polar ice sheets. The team looked for changes in the height of the ice surface caused by subglacial lakes either filling or draining. “When they fill, the ice surface above the lake moves up. The whole column of ice above the lake needs to go somewhere,” said Wilson. “It’s kind of like a blister under the ice sheet.”
A Census of Lake Activity
Wilson and her collaborators analyzed CryoSat-2 radar altimetry data collected from 2010 to 2020 over the margins of Antarctica. The vertical resolution of CryoSat-2 data is a few centimeters at best, and the team found 85 regions that changed in height not by centimeters but rather by meters. Those robust signals very likely correspond to active subglacial lakes, the team concluded.
A new study relying on archival CryoSat-2 data identified 85 lakes beneath the Antarctic Ice Sheet. Credit:
ESA (Data source: Wilson, S. et al., 2025)/
ESA
That makes sense, said Leigh Stearns, a glaciologist at the University of Pennsylvania in Philadelphia who was not involved in the research. “There’s really nothing else that could cause the kinds of elevation changes that they’re seeing.”
Wilson and her colleagues found that 50 of the lakes they discovered exhibited both filling and draining behavior. And 10 of those lakes exhibited a complete cycle of filling and draining. On average, it took several years for lakes to fill and also several years for them to drain, the team noted.
To their surprise, the researchers found that individual lakes didn’t always fill and drain to the same level. The ice above a lake known as Whillans_180 in West Antarctica, for instance, uplifted, then subsided, then uplifted again by roughly 5 meters. However, after this consistent pattern, the ice then subsided only by about half that amount before beginning to uplift yet again, Wilson and her colleagues found.
The team also noted five regions across Antarctica where the lakes they discovered appeared to be connected. The researchers inferred such a connection by observing upstream draining events in some lakes that were nearly contemporaneous with downstream filling events in other nearby lakes.
These observations hint at a complicated hydrological network beneath the Antarctic Ice Sheet, said Wilson. Tracing how water moves under ice has long been a holy grail of polar science, she said. “Identifying the lakes is one thing. But actually tracking the movement of water is an entirely different ball game.”
Have Lakes, Will Lubricate
Water flowing from subglacial lakes can have a significant effect on glaciers in the vicinity. “It can lubricate the bed of the glacier and potentially make it flow faster,” said Wilson. “That contributes to sea level rise.”
“Being able to look at something on the surface to infer what’s happening at the bed is really exciting.”
The freshwater present in subglacial lakes can also change local ocean currents when it eventually drains to the ocean. The mere presence of freshwater can furthermore affect the many marine organisms that live around an ice shelf, said Wilson.
Finding these new subglacial lakes offers a window of sorts into what’s happening deep beneath the Antarctic Ice Sheet, said Stearns. “Being able to look at something on the surface to infer what’s happening at the bed is really exciting.”
An unexpected trove of archival satellite data made this work possible, Wilson and her collaborators noted.
CryoSat-2 in particular has vastly over-delivered—its nominal mission was supposed to be only three and a half years; it’s still going strong, more than 15 years later. “It’s way outlasted its expected mission lifetime,” said Wilson. Such long-term records are particularly valuable because they can be used to trace gradual changes in polar regions, she said.
“We should be putting money and effort into keeping these datasets alive.”
—Katherine Kornei (@KatherineKornei), Science Writer
Citation: Kornei, K. (2025), Satellite data reveal changing lakes under Antarctic ice,
Eos, 106, https://doi.org/10.1029/2025EO250412. Published on 4 November 2025.
Text © 2025. The authors.
CC BY-NC-ND 3.0Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.