Feed aggregator

Rich countries drain ‘shocking’ amount of labor

Science - Thu, 08/08/2024 - 05:56
Science, Volume 385, Issue 6709, Page 590-590, August 2024.

Deadlier strain of mpox spreads to multiple African countries

Science - Thu, 08/08/2024 - 05:56
Science, Volume 385, Issue 6709, Page 591-591, August 2024.

News at a glance

Science - Thu, 08/08/2024 - 05:56
Science, Volume 385, Issue 6709, Page 582-583, August 2024.

A new force emerges in genomics

Science - Thu, 08/08/2024 - 05:56
Science, Volume 385, Issue 6709, Page 595-599, August 2024.

Science should save all, not just some

Science - Thu, 08/08/2024 - 05:56
Science, Volume 385, Issue 6709, Page 581-581, August 2024.

Do small outdoor geoengineering experiments require governance?

Science - Thu, 08/08/2024 - 05:56
Science, Volume 385, Issue 6709, Page 600-603, August 2024.

In Science Journals

Science - Thu, 08/08/2024 - 05:56
Science, Volume 385, Issue 6709, Page 615-617, August 2024.

Comparison of the Occurrence Morphology of Phase Scintillation of GPS and Beidou Signals at Zhongshan Station, Antarctica

JGR:Space physics - Thu, 08/08/2024 - 05:20
Abstract

The characteristics of phase scintillation (represented by the phase scintillation indices, σφ) from GPS and Beidou are statistically analyzed using a ground-based receiver at Zhongshan Station, Antarctica, from 2020 to 2022 for the first time. The phase scintillation of the GPS and Beidou signals present a similar pattern of occurrence. The statistical results on the occurrence morphology of phase scintillation show that the phase scintillation predominately occurs in the magnetic pre-noon and pre-midnight sectors. Moreover, phase scintillation performs a dependence on solar and geomagnetic activities. Furthermore, the phase scintillation also gives a seasonal variation with the maximum occurrence happened at the autumn and the minimum occurrence during the summer. Consequently, these results improve understanding of the morphological characteristics of the phase fluctuations in the less studied Antarctic region. The study also demonstrates the use of the combined data set to improve the coverage in the Antarctic region.

Evaluation of Detection Efficiency of World Wide Lightning Location Network in Southeast Asian Region

JGR–Atmospheres - Wed, 08/07/2024 - 19:09
Abstract

The detection efficiency (DE) of the World Wide Lightning Location Network (WWLLN) is evaluated in Southeast Asia by comparing WWLLN data with the Earth Network Total Lightning Network (ENTLN) data taking into account time, distance, and peak-current parameters. The performance of WWLLN is evaluated in the months of November and December in two different years (2020–2021). These periods are selected to assess the change (if any) in DE overtime and the inclusion of new stations. The strokes between the two networks were considered matched if they fell within a time criterion of 100 µs and a location difference of 25 km. Using this criterion, 5.2 × 106 WWLLN strokes were matched with ENTLN cloud-to-ground (CG) lightning strokes in November-December 2020, resulting in a DE of 32.9%. Similarly, 4.6 × 106 WWLLN strokes were found to match in November-December 2021, yielding a DE of 36.5%. Analysis of the peak-currents reveals that DE is lowest (<10%) for a peak-current below ±10 kA. However, for peak-current exceeding ±50 kA, the DE increases to ∼60%. During November-December 2021, WWLLN reported 38.95 × 106 lightning strokes globally; amongst them, Dhaka station detected 0.5 × 106 strokes, contributing to a 1.3% increase in the global DE. Dhaka station detects most lightning strokes within 8 × 103 km, which diminishes to zero after 10 × 103 km. The Dhaka station recorded a larger number of strokes at longer detection distances during midnight (22:00–02:00) than during noon (10:00–14:00). The results signify a positive impact of the Dhaka station on WWLLN's DE during the mentioned period.

Assessing the Tropospheric Temperature and Humidity Simulations in CMIP3/5/6 Models Using the AIRS Obs4MIPs V2.1 Data

JGR–Atmospheres - Wed, 08/07/2024 - 18:39
Abstract

In this study, the Atmospheric Infrared Sounder (AIRS) Observations for Model Intercomparison Projects (Obs4MIPs) V2.1 tropospheric air temperature, specific humidity, and relative humidity data are utilized to evaluate the global tropospheric temperature and humidity simulations in the fully coupled global climate models from the Coupled Model Intercomparison Project phases 3, 5, and 6 (CMIP3, CMIP5, and CMIP6), and possible simulation improvement in CMIP6 models in comparison to CMIP3 and CMIP5 models. Our analyses indicate that all three phases of CMIP models share similar tropospheric air temperature, specific humidity, and relative humidity biases in their multi-model ensemble means relative to AIRS. Cold biases up to 4 K and positive relative humidity biases up to 20% are found in the free troposphere almost globally with maxima over the mid-latitude storm tracks. Warm biases up to 2 K are seen over the Southern Ocean in the lower troposphere. Positive specific and relative humidity biases exist over the off-equatorial oceans while negative specific and relative humidity biases are seen near the equator in the tropical free troposphere, which are related to the double-intertropical convergence zone bias in the models. Both the air temperature and specific humidity biases are important to the relative humidity biases except in the tropical free troposphere where the specific humidity biases dominate. The tropospheric air temperature, specific humidity, and relative humidity biases are reduced from CMIP3 to CMIP5 and to CMIP6 at almost all pressure levels except at 300 hPa for specific humidity and in the boundary layer for relative humidity.

kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation

Geoscientific Model Development - Wed, 08/07/2024 - 18:28
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024, 2024
Estimation of map accuracy based on cross-validation (CV) in spatial modelling is pervasive but controversial. Here, we build upon our previous work and propose a novel, prediction-oriented k-fold CV strategy for map accuracy estimation in which the distribution of geographical distances between prediction and training points is taken into account when constructing the CV folds. Our method produces more reliable estimates than other CV methods and can be used for large datasets.

An Independent Evaluation of GHGSat Methane Emissions: Performance Assessment

JGR–Atmospheres - Wed, 08/07/2024 - 18:25
Abstract

An independent evaluation of methane emissions data from GHGSat, a private company that operates a constellation of small microsatellites flying Fabry-Perot spectrometers operating at 1.6 µm, was performed. Data from multiple GHGSat commercial satellites, consisting of retrieved methane, diagnostics, and, where detected, plume and emissions information from roughly 250 scenes across Canada were analyzed. From these, 10 scenes contained methane plumes with a 2% detection rate for oil and gas scenes, and 10% for landfills. Methane precision was found to be 5%/2% on average for the C1/C2–C5 designs, with some variability due to scene albedo, terrain roughness, and airmass. Synthetic GHGSat plumes, generated using Lagrangian plume dispersion model and GHGSat characteristics, indicates typical detection limits of 240/180 kg/hr(C1/C2–C5), with a best case of roughly 100 kg/hr. Emissions and their uncertainties calculated using an alternative approach were in broad agreement with GHGSat-reported emissions. Overall, the performance of the GHGSat C2 design (also used for C3 onward) for favorable-viewing conditions was found to be largely consistent with company-advertised performance.

Transition of the Sun to a Regime of High Activity: Implications for the Earth Climate and Role of Atmospheric Chemistry

JGR–Atmospheres - Wed, 08/07/2024 - 18:15
Abstract

It was recently suggested that the Sun could switch to a high-activity regime which would lead to a rise of ultraviolet radiation with an amplitude of about four times larger than the amplitude of an average solar activity cycle and a simultaneous drop in total solar irradiance. Here, we applied the SOCOLv3-MPIOM model with an interacting ocean to simulate the response of chemistry, dynamics, and temperature of Earth's atmosphere to such a change in solar irradiance. We studied the effect of high activity regime on the atmosphere investigating the influence of the chemical and radiative processes on the climate, and chemistry of NOx, HOx, and O3. We find a climate cooling by up to 1K and a substantial increase in stratospheric ozone (up to 14%) and total ozone (up to 8%). To understand the role of the different processes we performed simulations with two sets of forcing accounting separately for the influence on chemical processes and for direct radiation energy balance. Our calculations show that the stratospheric O3 response is almost fully driven by the chemical processes. We also found that the direct radiation processes lead to near-surface cooling that results in the suppression of the Brewer-Dobson circulation. This, in turn, leads to the reduction of H2O influx from the low layers of the troposphere and to less intensive transport of ozone from the tropics to the middle latitudes. The surface climate response is dominated by direct radiation influence with only a small contribution from chemical processes.

An Investigation on Causes of the Detected Surface Solar Radiation Brightening in Europe Using Satellite Data

JGR–Atmospheres - Wed, 08/07/2024 - 17:14
Abstract

Surface solar radiation is fundamental for terrestrial life. It provides warmth to make our planet habitable, drives atmospheric circulation, the hydrological cycle and photosynthesis. Europe has experienced an increase in surface solar radiation, termed “brightening,” since the 1980s. This study investigates the causative factors behind this brightening. A novel algorithm from the EUMETSAT satellite application facility on climate monitoring (CM SAF) provides the unique opportunity to simulate surface solar radiation under various atmospheric conditions for clouds (clear-sky or all-sky), aerosol optical depth (time-varying or climatological averages) and water vapor content (with or without its direct influence on surface solar radiation). Through a multiple linear regression approach, the study attributes brightening trends to changes in these atmospheric parameters. Analyzing 61 locations distributed across Europe from 1983 to 2020, aerosols emerge as key driver during 1983–2002, with Southern Europe and high elevations showing subdued effects (0%/decade–1%/decade) versus more pronounced impacts in Northern and Eastern Europe (2%/decade–6%/decade). Cloud effects exhibit spatial variability, inducing a negative effect on surface solar radiation (−3%/decade–−2%/decade) at most investigated locations in the same period. In the period 2001–2020, aerosol effects are much smaller, while cloud effects dominate the observed brightening (2%/decade–5%/decade). This study therefore finds a substantial decrease in the cloud radiative effect over Europe in the first two decades of the 21st century. Water vapor exerts negligible influence in both sub-periods.

Regimes of Precipitation Change Over Europe and the Mediterranean

JGR–Atmospheres - Wed, 08/07/2024 - 16:44
Abstract

The Mediterranean region is experiencing pronounced aridification and in certain areas higher occurrence of intense precipitation. In this work, we analyze the evolution of the precipitation probability distribution in terms of precipitating days (or “wet-days”) and all-days quantile trends, in Europe and the Mediterranean, using the ERA5 reanalysis. Looking at the form of wet-days quantile trends curves, we identify four regimes. Two are predominant: in most of northern Europe the precipitation quantiles all intensify, while in the Mediterranean the low-medium quantiles are mostly decreasing as extremes intensify or decrease. The wet-days distribution is then modeled by a Weibull law with two parameters, whose changes capture the four regimes. Assessing the significance of the parameters' changes over 1950–2020 shows that a signal on wet-days distribution has already emerged in northern Europe (where the distribution shifts to more intense precipitation), but not yet in the Mediterranean, where the natural variability is stronger. We extend the results by describing the all-days distribution change as the wet-days’ change plus a contribution from the dry-days frequency change, and study their relative contribution. In northern Europe, the wet-days distribution change is the dominant driver, and the contribution of dry-days frequency change can be neglected for wet-days percentiles above about 50%. In the Mediterranean, however, the change of precipitation distribution comes from the significant increase of dry-days frequency instead of an intensity change during wet-days. Therefore, in the Mediterranean the increase of dry-days frequency is crucial for all-days trends, even for heavy precipitation.

Asymmetric Sea Surface Salinity Response to Global Warming: “Fresh Gets Fresher but Salty Hesitates”

GRL - Wed, 08/07/2024 - 14:39
Abstract

Efforts to detect long-term changes in global mean evaporation minus precipitation over the ocean remain ambiguous. Here we define an ad hoc sea surface salinity index to assess the observed and simulated intensification of the freshwater flux pattern over the global ocean and, thus, of the overall water cycle. A recent salinity reconstruction shows a long-term amplification of the climatological patterns, thereby supporting the popular “fresh gets fresher, salty gets saltier” paradigm. Unlike in a previous study, no systematic underestimation of this amplification is found in the latest generation of global climate models. Yet, the “fresh gets fresher” paradigm is much more robust than its “salty gets saltier” counterpart and the proposed salinity index does not yet provide a strong constraint on the model-dependent projected intensification of the global water cycle intensification along the 21st century.

Velocity of Greenland's Helheim Glacier Controlled Both by Terminus Effects and Subglacial Hydrology With Distinct Realms of Influence

GRL - Wed, 08/07/2024 - 14:34
Abstract

Two outstanding questions for the future of the Greenland Ice Sheet are (a) how enhanced meltwater draining beneath the ice will impact the behavior of large tidewater glaciers, and (b) to what extent tidewater glacier velocity is driven by changes at the terminus versus changes in sliding velocity due to meltwater. We present a two-way coupled framework to simulate the nonlinear feedbacks of evolving subglacial hydrology and ice dynamics using the Subglacial Hydrology And Kinetic, Transient Interactions (SHAKTI) model within the Ice-sheet and Sea-level System Model (ISSM). Through coupled simulations of Helheim Glacier, we find that terminus effects dominate the seasonal velocity pattern up to 15 km from the terminus, while hydrology drives the velocity response upstream. With increased melt, the hydrology influence yields seasonal acceleration of several hundred meters per year in the interior, suggesting that hydrology will play an important role in future mass balance of tidewater glaciers.

Probability of Firn Aquifer Presence in Antarctica by Combining Remote Sensing and Regional Climate Model Data

GRL - Wed, 08/07/2024 - 14:24
Abstract

Despite in-situ observations of perennial firn aquifers (PFAs) at specific locations of the Antarctic ice sheet, a comprehensive continent-wide mapping of PFA distribution is currently lacking. We present an estimate of their distribution across Antarctica in the form of a probability assessment using a Monte Carlo technique. Our approach involves a novel methodology that combines observations from Sentinel-1 and Advanced SCATterometer (ASCAT) with output from a regional climate model. To evaluate our method, we conduct an extensive comparison with Operation Ice Bridge observations from the Greenland Ice Sheet. Application to Antarctica reveals high PFA probabilities in the Antarctic Peninsula (AP), particularly along its northern, northwestern, and western coastlines, as well as on the Wilkins, Müller, and George VI ice shelves. Outside the AP, PFA probability is low, except for some locations with marginally higher probabilities, such as on the Abbot, Totten, and Shackleton ice shelves.

Surface Uplift Due To Time‐Varying Elastic Thickness in Continental Interiors

GRL - Wed, 08/07/2024 - 14:11
Abstract

If, as previously hypothesized, the effective elastic response of the lithosphere is sensitive to the imposed stress regime, then it may vary in time and produce distinctive geomorphic responses. Such effects will be at their most crucial in landscapes of low relief. Motivated by the existence of numerous small endorheic (internally-drained) basins in central Australia, we examine the influence of changing elastic response in the presence of large embedded loads in the lithosphere underlying stable continental interiors. Focusing on the western Lake Eyre Basin and adjoining Lake Lewis basin—an area with a close correlation between drainage pattern and extreme Bouguer gravity anomalies—we devise a set of numerical simulations that incorporate the flexural response to time-transient horizontal stresses. The simulations demonstrate that transient changes in the effective elastic thickness can drive topographic changes in low-relief landscapes, including drainage capture and the development of endorheic basins, consistent with field observations.

Chloromethanes in the North American Troposphere and Lower Stratosphere Over the Past Two Decades

GRL - Wed, 08/07/2024 - 14:05
Abstract

Aircraft observations of the four chloromethanes: carbon tetrachloride (CCl4), methyl chloride (CH3Cl), dichloromethane (CH2Cl2), and chloroform (CHCl3), collected over North America between 2000 and 2022, were used to evaluate their vertical distributions and temporal trends in the atmosphere. We examine the vertical profiles, from the surface to the lower stratosphere (LS), of these increasingly important contributors to ozone-depleting chlorine in both altitude and potential temperature space. Airborne chloromethane trends were compared with those measured at long-term, ground-based monitoring stations. Below 20 km altitude, CCl4 trends were decreasing at all levels studied in the North American atmosphere (−1.1 ppt yr−1). CHCl3 and CH2Cl2 airborne observations were comparable to ground network measurements: CHCl3 increased between 2000 and 2018 and then decreased leading to a negligible trend over the 22 years studied and CH2Cl2 has been increasing at all levels in the troposphere (+2.41 ppt yr−1, 2000–2022, <20 km).

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer