Abstract
Lightning is the severest threaten to safe operation of wind turbines. In this letter, the authors present the first altitude-triggered lightning experiment involving an elevated 12 m-long wind turbine blade placed on the ground. A total of 50 precursors with amplitude over 62.9 A were observed through measurements of channel-base current, fast electric field, and optical data. The air gap with around 3–5 m has been bridged between the wire's lower extremity and the metal blade tip during ascending of the rocket and it is observed to be luminous by slow framing rate camera. The precursors are classified into three groups, namely bipolar pulses, unipolar pulses, and group pulses. Excluding the precursors preceding the initial stage and M-components at the late-time of the initial stage, five stages are classified. In the first stage, the current remains limited at a relatively small value, while the electric field exhibited a slow rising behavior with positive polarity. In the second stage, the current starts to increase, and the electric field rapidly intensifies due to the accumulating charge, and the wire is assumed to experience an explosion. In the third stage, the reconnection process occurs. The current is characterized by a peak value of 1.45 kA with 10%–90% risetime of 10.4 μs. The electric fields suffer from notable decrease and are characterized by a microsecond-scale V-shape pulse. The current cutoff is quite short that almost not found. In the fourth step, the current is characterized by superimposed pulses. The final stage is the channel darkening.