Exploring the use of seasonal forecasts to adapt flood insurance premiums
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Abstract
Horizontal and vertical moisture advection in the lower troposphere of the Arctic under progressing global warming is examined using a large-scale ensemble model data set. Advection is decomposed into terms related to the basic state of the atmosphere and transient eddies and compared against a non-warming experiment. During summer, horizontal moisture advection increases mainly by transient eddies advecting moisture from the lower latitudes. During winter, enhanced evaporation due to reduced sea ice becomes a source of moisture diminishing the role of transient eddies moistening the atmosphere. This effect intensifies under extreme global warming, turning the change in total horizontal advection in the lower troposphere negative. Diminished horizontal advection during winter is counteracted by vertical advection accompanied with enhanced evaporation and upper-level horizontal advection maintaining the increase in column moisture. These results improve our understanding of how the water cycle in the Arctic responds via atmospheric processes under global warming.
Abstract
The lack of high vertical resolution atmospheric thermodynamic structure observations inside or near major weather events impedes our understanding of physical processes and their predictability in numerical weather prediction (NWP) models. Airborne Global Navigation Satellite System (GNSS) radio occultation (airborne radio occultation [ARO]) has proven to be a viable remote sensing option to offer dense soundings near flight tracks. The global fleet of commercial aircraft already equipped with GNSS receivers could be leveraged to produce an unprecedented number of ARO soundings along global flight paths. Eleven cases of atmospheric bending angle and refractivity profiles were successfully retrieved and compared with the colocated European Center for Medium-Range Weather Forecasting global reanalysis data. Good quality measurements are obtained with median refractivity differences less than 1% in the middle and upper troposphere, between 5.5 and 11.5 km. Given the use of aircraft data (e.g., Aircraft Meteorological DAta Relay) for data assimilation, incorporating ARO profiles would be a valuable addition, further enhancing the accuracy of aviation and weather forecasts.
Abstract
The time it takes for an ecosystem to recover from a disturbance is a key to environmental management. Conventionally, recovery is defined as a return to the pre-disturbance state, assuming ecosystem stationarity. However, this view does not account for the impact of external forces like climate change, imposing non-stationarity and trends. Alternatively, the counterfactual approach views recovery as the state the ecosystem would have achieved if the disturbance had not occurred, accounting for external forces. Here, we present a simple method to estimate the counterfactual recovery time. By implementing our method to the greening of the Arctic region, we showed that counterfactual greening recovery is twice as long as conventional recovery over the region. We argue that the well-documented greening of the region acts as an external force, leading to such a large difference. We advocate for embracing the counterfactual definition of recovery, as it aligns with realistic decision-making processes.
Abstract
Effects of eccentricity and horizontal electric field (E
H) on the binary-collision outcomes of water drops are examined using numerically calculated collision characteristics from previous studies and results of simulation experiment conducted by the authors. For a fixed collision kinetic energy (CKE), filament breakups can occur at all values of eccentricity but events of coalescence decrease, and that of sheet breakup increase with increasing eccentricity in absence of E
H. However, as E
H increases to ∼300 kVm−1 it opposes the variability of the coalescence and sheet breakup events with eccentricity. When E
H exceeds ∼300 kVm−1 the collision outcomes might be determined only by the CKE and E
H. The calculated value of coalescence efficiency and total number of fragments after a binary collision decreases with an increase in E
H. It is argued that an electric field can significantly modify drop size distribution in thunderclouds and needs to be considered for development of precipitation.
Abstract
Following the Hunga Tonga–Hunga Ha'apai (HTHH) eruption in January 2022, significant reductions in stratospheric hydrochloric acid (HCl) were observed in the Southern Hemisphere mid-latitudes during the latter half of 2022, suggesting potential chlorine activation. The objective of this study is to comprehensively understand the loss of HCl in the aftermath of HTHH. Satellite measurements and a global chemistry-climate model are employed for the analysis. We find strong agreement of 2022 anomalies between the modeled and the measured data. The observed tracer-tracer relations between nitrous oxide (N2O) and HCl indicate a significant role of chemical processing in the observed HCl reduction, especially during the austral winter of 2022. Further examining the roles of chlorine gas-phase and heterogeneous chemistry, we find that heterogeneous chemistry emerges as the primary driver for the chemical loss of HCl, and the reaction between hypobromous acid (HOBr) and HCl on sulfate aerosols is the dominant loss process.
Abstract
While shallow creep along the Haiyuan fault is a key element in estimating earthquake potential, both the creep rate and spatial distribution inferred from InSAR and repeating earthquakes are still controversial. In this study, we resolve two potentially separated creeping patches along the Laohushan fault (LHSF) based on dense near-field GPS measurements of 39 stations. The largest creeping patch, which extends ∼20 km along-strike and ∼9 km down-dip with a slip rate of 4.2 mm/yr, spatially correlates with seismicity, especially repeating earthquakes. The locked segment is capable of producing an earthquake of Mw 7.3 ± 0.1, with moment rate of (1.08 ± 0.39) × 1017 N⋅m/yr, possibly following the cycle since the 1092 M8 event. The lack of GPS measurements in the near-field makes it unclear whether the 8 km section between these two patches is slowly creeping below detection threshold or has relocked due to change in environmental condition.
Abstract
As global warming intensifies, the coupling relationship between negative Indian Ocean Dipole (nIOD) and La Niña has substantially changed. However, the characteristics and mechanisms of these changes are not yet fully understood. Here, we find that the impact of La Niña on nIOD has considerably weakened since 1999, with the frequency of nIOD occurrences during La Niña years plummeting to a mere one-third of the pre-1999 levels. This is primarily attributed to the early onset of Indian summer monsoon and the decrease in La Niña intensity, while the effect of variations in Bjerknes feedback is relatively minor. Model simulations suggest that the influence of La Niña on nIOD will continue to weaken under future global warming through similar mechanisms as in the observations, increasing the complexity of air-sea coupling in the Indian Ocean.
TIMED Doppler Interferometer Measurements of Neutral Winds at the Mesosphere and Lower Thermosphere and Comparison to Meteor Radar Winds
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys. Discuss., https//doi.org/10.5194/angeo-2024-13,2024
Preprint under review for ANGEO (discussion: open, 0 comments)
This study focuses on the TIMED Doppler Interferometer (TIDI)-Meteor Radar(MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI winds measurements and MR winds shows good agreement. A TIDI-MR seasonal comparison and the altitude-latitude dependence for winds is performed. TIDI reproduce the mean circulation well when compared with the MRs and might be useful as a lower boundary for general circulation models.
Abstract
We investigate the continent-size lithospheric structures of paleo rift around the central Korean Peninsula using ambient noise tomography and earthquake-based Eikonal tomography based on dense seismic networks. We determine Rayleigh-wave group velocities at periods of 1–15 s from ambient noise tomography and Rayleigh-wave phase velocities at periods of 20–80 s from earthquake-based Eikonal tomography. We determine a 3-D shear-wave velocity model in the lithosphere from the Rayleigh wave velocities. The model exhibits high lateral variations ranging from ∼ ${\sim} $‒9% to ∼ ${\sim} $8%, depending on depth. The shear-wave velocities at shallow depths (≤ ${\le} $2 km) are relatively high in mountain regions and low in coastal and basin regions. Strong velocity contrasts are observed around major earthquake hypocenters at depths of 3–20 km, which may be due to the presence of seismogenic faults. Shear-wave velocities at depths of ∼ ${\sim} $30–40 km are high along the east coast, suggesting uplifted mantle that is responsible for the opening of the East Sea (Sea of Japan). High velocity structures beneath Moho around the coast may suggest solidified underplated magma caused by the paleo rifting. The root of coast-parallel high-mountain range (Taebaek Mountain Range) is bounded by the uplifted mantle, presenting mountain range development in rift flank along paleo-rift axis. Low shear-wave velocities along the coast at depths ≥60 ${\ge} 60$ km may imply elevated temperature beneath the solidified underplated magma. The continent-side paleo rift affects the geological, thermal, and seismological properties around the continental margin at present.
An evaluation of atmospheric absorption models at millimetre and sub-millimetre wavelengths using airborne observations
Stuart Fox, Vinia Mattioli, Emma Turner, Alan Vance, Domenico Cimini, and Donatello Gallucci
Atmos. Meas. Tech., 17, 4957–4978, https://doi.org/10.5194/amt-17-4957-2024, 2024
Airborne observations are used to evaluate two models for absorption and emission by atmospheric gases, including water vapour and oxygen, at microwave and sub-millimetre wavelengths. These models are needed for the Ice Cloud Imager (ICI) on the next generation of European polar-orbiting weather satellites, which measures at frequencies up to 664 GHz. Both models can provide a good match to measurements from airborne radiometers and are sufficiently accurate for use with ICI.
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, 2024
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, 2024
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Physics-motivated cell-octree adaptive mesh refinement in the Vlasiator 5.3 global hybrid-Vlasov code
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, 2024
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.