Feed aggregator

Numerical investigations on the modelling of ultrafine particles in SSH-aerosol-v1.3a: size resolution and redistribution

Geoscientific Model Development - Mon, 08/19/2024 - 18:47
Numerical investigations on the modelling of ultrafine particles in SSH-aerosol-v1.3a: size resolution and redistribution
Oscar Jacquot and Karine Sartelet
Geosci. Model Dev. Discuss., https//doi.org/10.5194/gmd-2024-150,2024
Preprint under review for GMD (discussion: open, 0 comments)
As the health impact of ultrafine particles is better understood, modeling the size distribution and the number concentration becomes increasingly important. A new analytic formulation is presented to compute coagulation partition coefficients, allowing to lower down the numerical diffusion associated to the resolution of aerosol dynamics. The significance of this effect is assessed over Greater Paris with a chemistry transport model, using different size resolution of the particle distribution.

Forest‐Wide Growth Rates Stabilize After Experiencing Accelerated Temperature Changes Near an Alaskan Glacier

GRL - Mon, 08/19/2024 - 18:38
Abstract

How forests respond to accelerated climate change will affect the terrestrial carbon cycle. To better understand these responses, more examples are needed to assess how tree growth rates react to abrupt changes in growing-season temperatures. Here we use a natural experiment in which a glacier's fluctuations exposed a temperate rainforest to changes in summer temperatures of similar magnitude to those predicted to occur by 2050. We hypothesized that the onset of glacier-accentuated temperature trends would act to increase the variance in stand-level tree growth rates, a proxy for forest net primary productivity. Instead, dendrochronological records reveal that the growth rates of five, co-occurring conifer species became less synchronous, and this diversification of species responses acted to reduce the variance and to increase the stability of community-wide growth rates. These results warrant further inquiry into how climate-induced changes in tree-growth diversity may help stabilize future ecosystem services like forest carbon storage.

The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 1: Instrument description and level 1 radiances

Atmos. Meas. techniques - Mon, 08/19/2024 - 16:33
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 1: Instrument description and level 1 radiances
Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, and Daniel Cummins
Atmos. Meas. Tech., 17, 4757–4775, https://doi.org/10.5194/amt-17-4757-2024, 2024
The Far INfrarEd Spectrometer for Surface Emissivity, FINESSE, is designed to measure the ability of natural surfaces to emit infrared radiation. FINESSE combines a commercial instrument with custom-built optics to view a surface from different angles with complementary views of the sky. Its choice of internal components means it can cover a wide range of wavelengths, extending into the far-infrared. We characterize FINESSE’s uncertainty budget and provide examples of its measurement capability.

The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 2: First measurements of the emissivity of water in the far-infrared

Atmos. Meas. techniques - Mon, 08/19/2024 - 16:33
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 2: First measurements of the emissivity of water in the far-infrared
Laura Warwick, Jonathan E. Murray, and Helen Brindley
Atmos. Meas. Tech., 17, 4777–4787, https://doi.org/10.5194/amt-17-4777-2024, 2024
We describe a method for measuring the emissivity of natural surfaces using data from the new Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) instrument. We demonstrate our method by making measurements of the emissivity of water. We then compare our results to the emissivity predicted using a model and find good agreement. The observations from FINESSE are novel because they allow us to determine surface emissivity at longer wavelengths than have been routinely measured before.

Large‐Scale Atomistic Simulations of Magnesium Oxide Exsolution Driven by Machine Learning Potentials: Implications for the Early Geodynamo

GRL - Mon, 08/19/2024 - 15:40
Abstract

The precipitation of magnesium oxide (MgO) from the Earth's core has been proposed as a potential energy source to power the geodynamo prior to the inner core solidification. Yet, the stable phase and exact amount of MgO exsolution remain elusive. Here we utilize an iterative learning scheme to develop a unified deep learning interatomic potential for the Mg-Fe-O system valid over a wide pressure-temperature range. This potential enables direct, large-scale simulations of MgO exsolution processes at the Earth's core-mantle boundary. Our results suggest that Mg exsolve in the form of crystalline Fe-poor ferropericlase as opposed to a liquid MgO component presumed previously. The solubility of Mg in the core is limited, and the present-day core is nearly Mg-free. The resulting exsolution rate is small yet nonnegligible, suggesting that MgO exsolution may provide a potentially important energy source, although it alone may be difficult to drive an early geodynamo.

Brief Communication: Rapid high-resolution flood impact-based early warning is possible with RIM2D: a showcase for the 2023 pluvial flood in Braunschweig

Natural Hazards and Earth System Sciences - Mon, 08/19/2024 - 15:13
Brief Communication: Rapid high-resolution flood impact-based early warning is possible with RIM2D: a showcase for the 2023 pluvial flood in Braunschweig
Shahin Khosh Bin Ghomash, Heiko Apel, Kai Schröter, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-139,2024
Preprint under review for NHESS (discussion: open, 0 comments)
This work introduces RIM2D, a hydrodynamic model for precise and rapid flood predictions, ideal for early warning systems. We demonstrate RIM2D's ability to deliver detailed and localized flood forecasts using the June 2023 flood in Braunschweig, Germany, as a case study. This research highlights the readiness of RIM2D and the required hardware for integration into operational flood warning and impact-based forecasting systems.

Development of operational decision support tools for mechanized ski guiding using avalanche terrain modelling, GPS tracking, and machine learning

Natural Hazards and Earth System Sciences - Mon, 08/19/2024 - 15:13
Development of operational decision support tools for mechanized ski guiding using avalanche terrain modelling, GPS tracking, and machine learning
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-147,2024
Preprint under review for NHESS (discussion: open, 0 comments)
We develop decision support tools to assist professional ski guides in determining safe terrain each day based on current conditions. To understand the decision-making process we collaborate with professional guides and build three unique models to predict their decisions. The models accurately capture the real world decision-making outcomes in 85–93 % of cases. Our conclusions focus on strengths and weaknesses of each model and discuss ramifications for practical applications in ski guiding.

Statistical and neural network assessment of climatological features of fog and mist at Pula airport in Croatia: from local to synoptic scale

Nonlinear Processes in Geophysics - Mon, 08/19/2024 - 10:42
Statistical and neural network assessment of climatological features of fog and mist at Pula airport in Croatia: from local to synoptic scale
Marko Zoldoš, Tomislav Džoić, Jadran Jurković, Frano Matić, Sandra Jambrošić, Ivan Ljuština, and Maja Telišman Prtenjak
Nonlin. Processes Geophys. Discuss., https//doi.org/10.5194/npg-2024-18,2024
Preprint under review for NPG (discussion: open, 0 comments)
Fog can disrupt aviation by causing accidents and delays due to low visibility, yet it remains under-researched in Croatia. This study examined fog and mist at Pula Airport using 20 years of data and machine learning techniques. There is a declining trend in fog, linked to changing weather patterns. Fog mainly occurs from October to March. These findings enhance knowledge about fog in Croatia and can improve weather forecasts, increasing safety at the airport.

Turbulence Embedded Into the Ionosphere by Electromagnetic Waves

JGR:Space physics - Mon, 08/19/2024 - 09:41
Abstract

When charged particles are accelerated from Earth's magnetosphere and precipitate into the atmosphere, their impact with neutral gas creates the aurora. Structured electric fields drive the acceleration processes but they are also passed down to the ionosphere, meaning that turbulence can in part be embedded into the ionosphere rather than emerge through instability processes locally. Applying a point-cloud analysis technique adapted from observational cosmology, we show how observed turbulence in the ionosphere matches electrical current signatures in the pulsating aurora in a series of conjunctions between space- and ground-based instruments. We propose that the temporal spectrum of pulsations in the pulsating aurora is the driver of a clearly observed energy injection into the ionosphere's unstable bottomside. Precipitating electrons produce electric fields through charge deposition, and we observe wave characteristics that are present in this pattern. Next, the relative electron-ion drifts excite the Farley-Buneman instability, the distribution of whose waves are organized according to the local electric field. It is the temporal characteristics of chorus wave interactions in the magnetosphere that is imparted, via precipitating electrons, to the pulsating aurora, and so we propose that chorus wave interactions are capable of embedding turbulent structure into the ionosphere. This structure (now pressure gradients) dissipate energy in the E-region through turbulent processes, observed by the icebear coherent scatter radar.

Frequency Bias Causes Overestimation of Climate Change Impacts on Global Flood Occurrence

GRL - Mon, 08/19/2024 - 07:00
Abstract

The frequency change of 100-year flood events is often determined by fitting extreme value distributions to annual maximum discharge from a historical base period. This study demonstrates that this approach may significantly bias the computed flood frequency change. An idealized experiment shows frequency bias exceeding 100% for a 50-year base period. Further analyses using Monte Carlo simulations, mathematical derivations, and hydrological model outputs reveal that bias magnitude inversely relates to base period length and is weakly influenced by the generalized extreme value distribution's shape parameter. The bias, persisting across different estimation methods, implies floods may exceed local defenses designed based on short historical records more often than expected, even without climate change. We introduce a frequency bias adjustment method, which significantly reduces the projected rise in global flood occurrence. This suggests a substantial part of the earlier projected increase in flood occurrence and impacts is not attributable to climate change.

Drivers for Geostationary 2–200 keV Electron Fluxes as Observed at GOES Satellites

Space Weather - Mon, 08/19/2024 - 03:59
Abstract

Electron fluxes in the keV energy range can cause significant spacecraft surface charging, which in turn can affect the functioning of spacecraft components. In this paper, the geostationary electron fluxes measured by the satellites GOES 13-18 in the energy range 2–200 keV are analyzed in order to look for their dependence on solar wind conditions. For this purpose, a range of solar wind parameters, IMF parameters and geomagnetic indices are examined, to look for the parameters which most significantly affect the electron flux. The analysis includes fluxes in the lower energy range of 2–40 keV, measured by GOES 16-18, which have not been analyzed before. The measured electron fluxes are averaged over all directions, and high-pass filtered to isolate variations shorter than 1 month. The analysis concentrates of the dawn sector, where variations are largest. A number of solar wind parameters and magnetic indices are analyzed concurrently with the electron flux data, to look for the most significant correlations between them. Most parameters have the highest correlation with electron flux when shifted in time by a certain delay. In addition to the different solar wind parameters and magnetic indices, combinations of different parameters are also examined for their best correlation with the electron flux. The most significant driving parameters are found to be the auroral electrojet index, combined with either the solar wind plasma velocity or the plasma density. The relative contribution of each of these parameters depends on electron energy, and differs between periods of high and low flux.

Characterization and Evolution of Seismic Sequences in the Normal Fault Environment of the Southern Apennines

JGR–Solid Earth - Mon, 08/19/2024 - 03:09
Abstract

The use of seismic catalogs enhanced through advanced detection techniques improves the understanding of earthquake processes by illuminating the geometry and mechanics of fault systems. In this study, we performed accurate hypocentral locations, source parameters estimation and stress release modeling from catalogs of microseismic sequences nucleating in the complex normal fault system of the Southern Apennines (Italy). The application of advanced location techniques resulted in the relocation of ∼30% of the earthquakes in the enhanced catalogs, with hypocenters clearly identifying local patches on kilometer-scale structures that feature consistent orientation with the main faults of the area. When mapping the stress change on the fault plane, the inter-event distance compared to the size of the events suggests that the dominant triggering mechanism within the sequences is static stress transfer. The distribution of events is not isotropic but dominantly aligned along the dip direction. These slip-dominated lineations could be associated with striations related to fault roughness and could map the boundary between locked and creeping domains in Apulian platform and basement.

Quantifying the Effect of Pore‐Size Dependent Wettability on Relative Permeability Using Capillary Bundle Model

JGR–Solid Earth - Mon, 08/19/2024 - 03:03
Abstract

Relative permeability is a key parameter for characterizing the multiphase flow dynamics in porous media at macroscopic scale while it can be significantly impacted by wettability. Recently, it has been reported in microfluidic experiments that wettability is dependent on the pore size (Van Rooijen et al., 2022). To investigate the effect of pore-size-dependent wettability on relative permeability, we propose a theoretical framework informed by digital core samples to quantify the deviation of relative permeability curves due to wettability change. We find that the significance of impact is highly dependent on two factors: (i) the function between contact angle and pore size (ii) overall pore size distribution. Under linear function, this impact can be significant for tight porous media with a maximum deviation of 1,000%.

Turbulence Around Auroral Arcs

JGR:Space physics - Sun, 08/18/2024 - 16:54
Abstract

The spectacular visual displays from the aurora come from curtains of excited atoms and molecules, impacted by energetic charged particles. These particles are accelerated from great distances in Earth's magnetotail, causing them to precipitate into the ionosphere. Energetic particle precipitation is associated with currents that generate electric fields, and the end result is a dissipation of the hundreds of gigawatts to terrawatts of energy injected into Earth's atmosphere during geomagnetic storms. While much is known about how the aurora dissipates energy through Joule heating, little is known about how it does so via small-scale plasma turbulence. Here we show the first set of combined radar and optical images that track the position of this turbulence, relative to particle precipitation, with high spatial precision. During two geomagnetic storms occurring in 2021, we unambiguously show that small-scale turbulence (several meters) is preferentially created on the edges of auroral forms. We find that turbulence appears both poleward and equatorward of auroral forms, as well as being nestled between auroral forms in the north-south direction. These measurements make it clear that small scale auroral plasma turbulence is an integral part of the electrical current system created by the aurora, in the sense that turbulent transport around auroral forms enhances ionospheric energy deposition through Joule heating while at the same time reducing the average strength of the electric field.

Branched Crustal Flow and Its Dynamic Significance in Sanjiang Area, Eastern Tibetan Plateau——Insights From 3‐D Magnetotelluric Imaging

JGR–Solid Earth - Sun, 08/18/2024 - 07:19
Abstract

The crustal material from central Tibet is extruded in a clockwise direction along a belt on the eastern plateau. In the inner arc region of the escaping belt, the absence of key and detailed 3-D crustal resistivity structure hinders a comprehensive understanding of the dynamic processes of material escape in both the inner and outer arc regions. Here, we conducted magnetotelluric imaging and obtained the crustal 3-D resistivity structure in Sanjiang area. The results reveal the presence of two branched high-conductivity anomaly belts in the middle crust. Combining with other resistivity and velocity models, we speculated that crustal flow is widely distributed in the middle crust of the Chuan-Dian block. The crustal flow in the Sanjiang area may connect to that in the outer arc region. The crustal flow in the eastern part is extensively continuous, causing decoupling and flowing that facilitate intense horizontal movements and deformation of the upper crust. In the western Sanjiang area, the upper crust is strongly coupled with the lithosphere beneath the decoupling layer, resulting in weaker horizontal deformation, and fewer larger earthquakes. The initially weak crustal zone in the eastern Tibet may have been caused by uplift of hot mantle material. The high heat flow associated with uplift of hot mantle material and the frictional heating caused by the horizontal movement of weakly coupled crust further facilitated the formation of crustal flow in the outer arc region. The branched crustal flow in the Sanjiang area may have flowed from the outer arc region of the escaping belt.

Nonlinear Drift‐Bounce Resonance Between Charged Particles and Ultralow Frequency Waves

JGR:Space physics - Sun, 08/18/2024 - 05:33
Abstract

Ultra-low frequency (ULF) waves contribute significantly to the dynamic evolution of Earth's magnetosphere by accelerating and transporting charged particles within a wide energy range. A substantial excitation mechanism of these waves is their drift-bounce resonant interactions with magnetospheric particles. Here, we extend the conventional drift-bounce resonance theory to formulate the nonlinear particle trapping in the ULF wave-carried potential well, which can be approximately described by a pendulum equation. We also predict the observable signatures of the nonlinear drift-bounce resonance, and compare them with spacecraft observations. We further discuss potential drivers of the pendulum including the convection electric field and the magnetospheric dayside compression, which lead to additional particle acceleration or deceleration depending on magnetic longitude. These drivers indicate preferred regions for nonlinear ULF wave growth, which are consistent with previous statistical studies.

Observations and Model of Subauroral Sporadic E Layer Irregularities Driven by Turning Shears and Dynamic Instability

JGR:Space physics - Sun, 08/18/2024 - 05:23
Abstract

Observations of coherent scatter from patchy sporadic E layers in the subauroral zone made with a 30-MHz coherent scatter radar imager are presented. The quasiperiodic (QP) echoes are similar to what has been observed at middle latitudes but with some differences. The echoes arise from bands of scatterers aligned mainly northwest to southeast and propagating to the southwest. A notable difference from observations at middle latitudes is the appearance of secondary irregularities or braids oriented obliquely to the primary bands and propagating mainly northward along them. We present a spectral simulation of the patchy layers that describes neutral atmospheric dynamics with the incompressible Navier Stokes equations and plasma dynamics with an extended MHD model. The simulation is initialized with turning shears in the form of an Ekman spiral. Ekman-type instability deforms the sporadic E layer through compressible and incompressible motion. The layer ultimately exhibits both the QP bands and the braids, consequences mainly of primary and secondary neutral dynamic instability. Vorticity due to dynamic instability is an important source of structuring in the sporadic E layer.

Characteristics of Thin Magnetotail Current Sheet Plasmas at Lunar Distances

JGR:Space physics - Sun, 08/18/2024 - 05:19
Abstract

The magnetotail current sheet plays a key role in the dynamics of Earth's magnetosphere. Specifically, the formation and subsequent reconnection of thin (ion-gyroscale) current sheets are critical components of magnetospheric substorms. However, the precise mechanisms governing the configuration and distribution of current density in these thin current sheets remain elusive. By analyzing a data set consisting of 453 thin current sheet crossings observed by the Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission, we explore the statistical properties of the ion and electron pressures and current densities, J i and J e , in the spacecraft rest frame. Using magnetotail flapping and magnetic field measurements to estimate the total current density, J 0, we find that it agrees well with the sum of those from direct ion and electron measurements, J i  + J e , respectively. In 65% of thin current sheets, electrons were found to dominate the contribution to the total current density in the spacecraft frame, with a typical dawnward drift velocity of ≳100 km/s. Diamagnetic drifts of electrons and ions estimated from their respective vertical pressure profiles (along the current sheet normal) reveal that the gradient of electron pressure alone cannot fully account for the observed high values of J e /J i . Counter-intuitively, for most (52% of) thin current sheets the electron vertical pressure profile is wider than the ion pressure profile, again suggesting that electron diamagnetism is an insufficient contributor to the current density at such sheets. These findings suggest the presence of a significant E × B dawnward drift that the electrons can fully acquire but ions cannot, being partially unmagnetized. We compare our results with those previously reported for the near-Earth magnetotail and discuss them in the context of magnetotail current sheet modeling.

A Survey of EMIC Waves in Van Allen Probe Data

JGR:Space physics - Sun, 08/18/2024 - 05:15
Abstract

Using an automated novel approach we conduct a reproducible systematic survey of electromagnetic ion cyclotron wave activity detected by Van Allen Probe B during the time period 2013 January 1–2019 July 15. We identify approximately 500 hr of EMIC wave activity, an occurrence rate of ∼ 0.85%. Accounting for satellite dwell time, we find that EMIC waves preferentially occur on the dayside, between 9 and 15 magnetic local time. This is true for both the H + and He + wavebands. Higher amplitude waves are found at higher values of L shell, while weaker waves occur at low L. The highest amplitudes are concentrated at high L near dawn and dusk. It is also found that EMIC wave occurrence is enhanced during periods of strong geomagnetic activity, with an occurrence rate of 2.7%. During storm times, waves preferentially occur in the afternoon and early evening sectors. The full list of electromagnetic ion cyclotron wave detection times and their properties is made publicly available to the community. This provides a reference catalog for comparison with other magnetospheric phenomena and other wave databases.

Elaborating the Atmospheric Transformation of Combined and Free Amino Acids From the Perspective of Observational Studies

JGR–Atmospheres - Sat, 08/17/2024 - 19:05
Abstract

Proteinaceous matter (PrM) is a substantial component of bioaerosols. Although numerous studies have examined the characteristics and sources of PrM in the atmosphere, its interactions with atmospheric oxidants remain uncertain. A 1-year observation of PrM characteristics in PM2.5 was performed in both urban Nanchang (eastern China) and suburban Guiyang (southwestern China), respectively. Glycine was the dominant free amino acid (FAA) species in urban Nanchang. In contrast, proline dominated both total free amino acids (FAAs) and total combined amino acids (CAAs) in suburban Guiyang. We found that oxidative degradation can significantly promote the release of FAAs, especially glycine, from CAAs in Nanchang. The controlled experiment on protein oxidation by hydroxyl radical suggested that the contribution of free glycine to the total FAA fraction tended to increase during the oxidative degradation of CAAs, supporting the predominance of glycine in FAAs in Nanchang and most previous observations. The composition of FAAs was mainly influenced by primary sources in suburban Guiyang with weak atmospheric degradation of PrM. These results suggest that the degradation of aerosol PrM by atmospheric oxidants can be responsible for the difference in FAA composition between the biosphere and the atmosphere, and also imply that the oxidative degradation of aerosol PrM may be a potential source of secondary organic nitrogen compounds in aerosols. Thus, this study can improve the current understanding of the composition characteristics of PrM in the biosphere and the atmosphere, as well as the liquid phase reactions of proteinaceous compounds with atmospheric oxidants.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer