Feed aggregator

Study finds impacts of 4.2 ka climate event no big deal, actually

Phys.org: Earth science - Fri, 08/16/2024 - 12:55
A megadrought that occurred 4,200 years ago had catastrophic impacts, potentially wiping out early empires and leading to large-scale changes worldwide. It was so significant it marked a turning point in the Earth's geologic history.

Transition to superdiffusive transport in turbulent plasmas

Physical Review E (Plasma physics) - Fri, 08/16/2024 - 10:00

Author(s): Matteo Stanzani, Filippo Arlotti, Guido Ciraolo, Xavier Garbet, and Cristel Chandre

We investigate the motion of charged particles in a turbulent electrostatic potential using guiding-center theory. By increasing the Larmor radius, the dynamics exhibit close-to-ballistic transport properties. The transition from diffusive to ballistic transport is analyzed using nonlinear dynamics.…


[Phys. Rev. E 110, 025204] Published Fri Aug 16, 2024

Future Changes in the Winter Beaufort High Under Warming Climate Scenarios

GRL - Fri, 08/16/2024 - 08:39
Abstract

We show that the winter Beaufort High (BH) index defined by sea level pressure (SLP) has a robust negative trend under the scenarios SSP5-8.5 and SSP2-4.5, with a reduction by about 5 hPa and 2 hPa, respectively, by the end of the 21st century. The negative trends in the BH SLP are associated with the changes in the background SLP over the Arctic basin. However, the vorticity of the winter BH tends to intensify under SSP5-8.5, but shows no robust increase under SSP2-4.5. The intensification is associated with the enhanced ridge over the Western Arctic. Therefore, it is necessary to take into account the dynamic aspects of the BH, such as vorticity. Based on this assessment, under the most likely emissions scenario, the winter BH is likely to weaken through the 21st century, in terms of SLP, but shows no robust changes in term of vorticity.

Process Modeling of Mineral Dissolution From Nano‐Scale Surface Topography Observations

GRL - Fri, 08/16/2024 - 07:39
Abstract

We present an innovative approach that combines a unique real-time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano-scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo-engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three-dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub-nm resolution.

Historical Trends in Cold‐Season Mid‐Latitude Cyclones in the Great Lakes Region

GRL - Fri, 08/16/2024 - 06:44
Abstract

The Great Lakes Region (GLR) of North America is at the intersection of multiple extratropical cyclone (ETC) tracks, and the region's cold-season climate is heavily influenced by the large temperature gradients and intense precipitation associated with these cyclones. The goal of this study is to understand how ETCs are changing within a warming climate. Historical GLR cyclone characteristics from 1959 to 2021 are examined using a storm tracking algorithm and the ERA-5 atmospheric reanalysis. Of the 886 cyclones identified, half are the large long-track cyclones that are typically included in ETC studies, and half are smaller short-track cyclones that, while not always considered in ETC studies, still have an important impact on the GLR with significant precipitation trends. While all cyclones exhibit strong interannual variability, storm trajectories appear to be migrating northward and, most notably, the cyclones are becoming warmer and wetter at a rate faster than the background climate.

Exploring Uncertainty of Trends in the North Pacific Jet Position

GRL - Fri, 08/16/2024 - 06:24
Abstract

It has been difficult to establish trends in the observed jet streams, despite modeling studies suggesting they will move polewards in a warming world. While this is partly due to biases between the models and observations, we propose that another uncertainty is rooted in the choice of statistic used to determine the ‘jet latitude’ — one measure used to quantify the jet position. We use seven different jet latitude statistics, four climate reanalysis products, and CMIP6 simulations to assess the relative importance of different uncertainties associated with lower-tropospheric North Pacific Jet (NPJ) trends. Our results show a statistically significant poleward trend in the observed winter NPJ across all reanalyzes and using all jet latitude statistics. The magnitude of this trend is most sensitive to the choice of statistic. Furthermore, we find that the NPJ shifts poleward in Autumn under high emission scenarios, which is robust to the choice of jet statistic.

Reductions in Forest Resilience: Unraveling the Decoupling Between Gross Primary Productivity and Photosynthetic Efficiency

GRL - Fri, 08/16/2024 - 05:44
Abstract

Ecosystem-scale photosynthetic efficiency (EPE) is proposed as an effective indicator to quantify gross primary productivity (GPP), but how the coupling between EPE and GPP varies as vegetation resilience decreases has not been evaluated. Here, we quantified forest resilience with optimized Bayesian models. With the use of multisource satellite and modeling data, our study revealed that forests on the Loess Plateau and in the Qinba Mountains in China are experiencing rapid resilience loss and are already facing mortality warnings after 2010. Reductions in resilience also drove the marked decoupling of GPP from EPE. Notably, the decline in resilience was accompanied by a decrease in EPE in about 74% of the forests while GPP increased. The mechanism underlying this decoupling could be attributed to enhanced atmospheric water demand and soil water constraints. The dynamic relationships found here could help to improve forest mortality models and enhance photosynthesis-based GPP evaluation.

Multi‐Decadal Variability of Amundsen Sea Low Controlled by Natural Tropical and Anthropogenic Drivers

GRL - Fri, 08/16/2024 - 05:40
Abstract

A crucial factor influencing the mass balance of the West Antarctic Ice Sheet is the Amundsen Sea Low (ASL), a climatological low-pressure region situated off the West Antarctic coast. However, albeit the deepening of the ASL since the 1950s has been attributed to anthropogenic forcing, the multi-decadal variability of the ASL remains poorly understood, because of a lack of long observations. Here, we apply a newly developed data assimilation method to reconstruct the ASL over 1870–2000. We study the forced and internal variability of the ASL using our new reconstruction in concert with existing large ensembles of climate model simulations. Our findings robustly demonstrate that an atmospheric teleconnection originating from the tropical Indo-Pacific is the main driver of ASL variability at the multi-decadal time scale, with resemblance to the Interdecadal Pacific Oscillation. Since the mid-20th century, anthropogenic forcing has emerged as a dominant contributor to the strengthening of the ASL.

On the Tropical Cyclone Integrated Kinetic Energy Balance

GRL - Fri, 08/16/2024 - 05:40
Abstract

Current global historical reanalyzes prevent to adequately examine the role of the near-core surface wind structural properties on tropical cyclones climate trends. Here we provide theoretical and observational evidences that they are crucial for the monitoring of integrated kinetic energy. The kinetic energy balance is reduced to a simple rule involving two parameters characterizing the surface wind structure and directly suggested by the governing equations. The theory is uniquely verified with a database of high-resolution ocean surface winds estimated from all-weather spaceborne synthetic aperture radar. Such measurements provide indirect estimates of a multiplicative constant modulating the kinetic energy balance and associated with the system thermodynamics. Consequently, accumulated high-resolution acquisitions of the ocean surface shall allow to better monitor the integrated kinetic energy and provide new means to tackle climatological studies of tropical cyclones destructiveness.

Interactions and Multifrequency Radiation Characteristics of Bidirectional Leaders in Altitude‐Triggered Lightning

GRL - Fri, 08/16/2024 - 05:30
Abstract

Altitude-triggered lightning provides favorable conditions for the research of bidirectional leader system. In the summer of 2023, altitude-triggered lightning experiment was conducted on the Field Experiment Base on Lightning Sciences, China Meteorological Administration. The multifrequency radiation characteristics of bidirectional leaders and the interactions of both ends during the propagation are analyzed. Specifically, the discharge processes that produce LF-MF magnetic radiations from bidirectional leaders are revealed by high-speed images, and these LF-MF radiations correspond to the VHF radiations generated by bidirectional leaders well. Unlike the strong correlation between LF-MF radiation strengths and discharge intensities, the VHF radiation strengths exhibit significant variation even among similar-intensity discharge events, as VHF radiations correspond to the random and microscopic discharge processes associated with streamers. Furthermore, the changes in leader speed and channel brightness before and after the initiation of bidirectional leaders indicate that the development of the two ends of bidirectional leaders is mutually reinforcing.

Global Cloud Biases in Optical Satellite Remote Sensing of Rivers

GRL - Fri, 08/16/2024 - 05:20
Abstract

Satellite imagery provides a global perspective for studying river hydrology and water quality, but clouds remain a fundamental limitation of optical sensors. Explicit studies of this problem were limited to specific locations or regions. In this study, we characterize the global severity of this limitation by analyzing 22 years of daily satellite cloud cover data and modeled river discharge for a global sample 21,642 river reaches of diverse sizes and climates. Our results show that the bias in observed river discharge is highly organized in space, particularly affecting Tropical and Arctic rivers. Given the fundamental nature of this cloud limitation, optical satellites will always provide a biased representation of river conditions. We discuss several strategies to mitigate bias, including modeling, data fusion, and temporal averaging, yet these methods introduce their own challenges and uncertainties.

On the Physical Mechanisms Driving the Different Deep Penetration of Radiation Belt Electrons and Protons

JGR:Space physics - Fri, 08/16/2024 - 05:10
Abstract

During active geomagnetic periods both electrons and protons in the outer radiation belt have been frequently observed to penetrate to low L (<4). Previous studies have demonstrated systematic differences in the deep penetration of the two species of particles, most notably that the penetration of protons is observed less frequently than for electrons of the same energies. A recent study by Mei et al. (2023, https://doi.org/10.1029/2022GL101921) showed that the time-varying convection electric field contributes to the deeper penetration of low-energy electrons and that a radial diffusion-convection model can be used to reproduce the storm-time penetration of lower-energy electrons to lower L. In this study, we analyze and provide physical explanations for the different behaviors of electrons and protons in terms of their penetration depth to low L. A radial diffusion-convection model is applied for the two species with coefficients that are adjusted according to the mass-dependent relativistic effects on electron and proton drift velocity, and the different loss mechanisms included for each species. Electromagnetic ion cyclotron (EMIC) wave scattering losses for 100s of keV protons during a specific event are modeled and quantified; the results suggest that EMIC waves interacting with protons of lower energies than electrons can contribute to prevent the inward transport of the protons.

Mixing, Water Transformation, and Melting Close to a Tidewater Glacier

GRL - Fri, 08/16/2024 - 05:06
Abstract

Marine-terminating glacier fjords play a central role in the transport of oceanic heat toward ice sheets, regulating their melt. Mixing processes near glacial termini are key to this circulation but remain poorly understood. We present new summer measurements of circulation and mixing near a marine-terminating glacier with active sub-glacial discharge. 65% of the fjord's vertical overturning circulation is driven by the buoyant plume, however we newly report intense vertical and horizontal mixing in the plume's horizontal spreading phase, accounting for the remaining 35%. Buoyant plume theory supports 2%–5% of total glacial melt. Thus, most of the heat associated with vertical overturing short-circuits the glacial front. We find however that turbulence in the horizontal spreading phase redistributes the short-circuited heat back into the surface waters of the near-glacial zone. Our findings highlight the need for further research on the complex mixing processes that occur near the glacier terminus.

Observational Evidence for Three Time‐Scale Modulations in the Pulsating Aurora

GRL - Fri, 08/16/2024 - 04:39
Abstract

We report an Arase-all sky imager (ASI) conjugate event in which the pulsating aurora (PsA) has a one-to-one correspondence with chorus bursts. Wavelet analysis displayed three peaks at ∼0.3 Hz, 4 Hz, and >10 Hz, corresponding to the main pulsation, internal modulation, and fast modulation, respectively. These correspond to the old terms of ∼5–15 s pulsations, chorus risers/elements and subelements/subpackets, respectively. Electron “microbursts” correspond to the 4-Hz peak. The internal and fast modulations are further verified by the analysis based on fast Fourier transform analyses. Moreover, the spatial distributions of the Fourier spectral amplitude show that the internal and fast modulations are well-structured within auroral patches. The above results indicate a paradigm shift away from quasilinear theory which implicitly assumes diffuse wave generation. The three time-scale modulations are consistent with coherent chorus which has been theoretically argued to lead to pitch angle transport three orders of magnitude faster.

PPP ambiguity resolution based on factor graph optimization

GPS Solutions - Fri, 08/16/2024 - 00:00
Abstract

Factor graph optimization has been widely used for state estimation in robotic SLAM community. Extensive algorithms have been proposed for camera/LiDAR/INS based SLAM. However, GNSS positioning based on factor graph optimization is limited, which prevents the introduction of high precise GNSS to robotic SLAM community. The current implementations are focused on pseudorange or RTK based positioning. PPP with ambiguity resolution (AR) is the state-of-the-art positioning technique for the past decade. Therefore, the PPP AR based on factor graph optimization is proposed, in which the pseudorange and carrier phases factors are constructed from the error equations of raw observations, while the ambiguity resolution factor is built from the ambiguity resolution. Results from 80 MGEX stations show that the average accuracy of static PPP is improved from 1.25, 0.61 and 2.29 cm to 0.81, 0.5 and 2.1 cm, corresponding to improvements of 35.1%, 18.7% and 8.7% in east, north, and up directions, respectively. As for kinematic PPP, the average accuracy is improved from 2.62, 2.21 and 5.8 cm to 1.64, 1.74 and 5.37 cm, corresponding to improvements of 37.5%, 21.6% and 7.4% in east, north, and up directions, respectively. The kinematic PPP was also verified with real-world data collected from a moving vehicle. After the first ambiguity fixing, the accuracy of PPP is improved from 3.7, 2.1 and 10.1 cm to 1.6, 2.0 and 9.0 cm for east, north and up component, respectively, corresponding to improvements of 32%, 5% and 11%. The above results confirm the efficiency of the proposed algorithm.

Integrated seismotectonic model of the 2013 Mw6.6 and 2022 Mw5.8 earthquake sequences in the southwestern section of the longmenshan fault zone, China, and its implication

Geophysical Journal International - Fri, 08/16/2024 - 00:00
SummaryThe 2008 Mw7.9 Wenchuan earthquake ruptured the middle and northeastern segments of the Longmenshan Fault Zone (LMSFZ), and the 2013 Mw6.6 Lushan earthquake ruptured a 50km-long fault in the southwestern segment. Subsequently, an Mw5.8 earthquake occurred approximately 10 km distant from the Mw6.6 Lushan earthquake. Therefore, the potential risk for larger earthquakes (>Mw6.6)on the southwestern section must be considered. This study collects the latest seismological and GPS data to construct an integrated seismotectonic model for the two neighboring earthquake sequences. The model integrates the fault planes involved, the mainshock rupture processes, the mainshock-caused Coulomb stress perturbation, the aftershock distribution and the 3-D velocity structure of the source region, providing information for seismic risk evaluation. We find that three fault planes were involved, two of which were related to the mainshocks, and the third was generated by the aftershocks following the first mainshock. The mainshocks were caused by nearly pure thrust faulting on the two planes with dip angles of approximately 45° and almost opposite dipping directions, thereby forming a conjugate angle of around 90°. The third plane was located between the two mainshocks, approximately parallel to the second mainshock's fault plane. Each of the mainshocks primarily ruptured a single asperity, displaying simple time history. The Coulomb stress change of the first mainshock facilitated the generation of the second mainshock and the third fault plane, and the second mainshock increased the stress on the first mainshock's fault plane. The aftershocks were distributed within stratified materials by spatially varying interfaces and characterized by high Vp and Vs velocity and a low Vp/Vs ratio. The atypical dip angles of approximately 45° for thrust faults and the conjugate angle of approximately 90° are indicative of high stress state. The single asperity rupture implies simple stress accumulation. The mainshock-caused Coulomb stress change did not reduce the seismic risk in the source region. The varying interfaces are interpreted as a consequence of long-term horizontal compression. All of these characteristics suggest that the two earthquake sequences were generated by the breakage of three immature faults under strong compression by background stress, and the high stress state remains within the southwestern LMSFZ.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer