Feed aggregator

Role of Middle-Scale Solar Wind Structures in the Turbulence Development Behind the Bow Shock

Geomagnetism and Aeronomy - Sun, 12/01/2024 - 00:00
Abstract

The study estimates the contribution of middle-scale solar wind structures (variations recorded by a spacecraft during ~10 min intervals) in turbulence development in the transition region behind the bow shock. The analysis is based on simultaneous measurements of plasma and/or magnetic field parameters in the solar wind, in the dayside magnetosheath, and on the flanks. The study adopts measurements by Wind, THEMIS, and Spektr-R spacecraft. The properties of the magnetic field and ion flux fluctuation spectra are analyzed in the 0.01–4 Hz frequency range, which corresponds to the transition from MHD to kinetic scales. The dynamics of turbulence properties in the magnetosheath is governed by large-scale disturbances, while structures with smaller scales have an effect in the absence of large-scale structures.

Long-Term Trends in Ionospheric Solar Activity Indices

Geomagnetism and Aeronomy - Sun, 12/01/2024 - 00:00
Abstract

The results of identifying trends in the annual average ionospheric indices ΔIG and ΔT are presented, obtained after excluding from IG and T the dependence of these indices on the annual average solar activity indices. The solar activity indices were F10, Ly-α, and MgII—solar radiation fluxes at 10.7 cm, in the Lyman-alpha line of hydrogen (121.567 nm), and the ratio of the central part to the flanks in the magnesium emission band 276–284 nm. Two time intervals (in years) are considered: 1980–2012 and 2013–2023. It was found that in 1980–2012, all analyzed linear trends were negative: the ΔIG and ΔT values decreased over time; they were very weak and insignificant. Fluctuations of ΔIG and ΔT with respect to trends for Ly-α were almost twice as large as for F10 and MgII. In the interval of 2013–2023, all analyzed linear trends intensified and became significant: the rate of decrease in ΔIG and ΔT over time increased. For MgII this rate was almost twice as high as for F10. For 2013–2023, the MgII index overestimated the contribution of solar radiation to ionospheric indices, especially during the growth phase of solar cycle 25, which began at the end of 2019. As a result, in the growth phase of solar cycle 25, the F10 index became a more adequate solar activity indicator for ionospheric indices than MgII. In the interval of 1980–2012, the F10 and MgII indices changed almost synchronously. The growth phase of solar cycle 25 was the first case this synchrony was disrupted for the entire period of MgII measurements.

Assessment of Atmospheric and Surface Energy Budgets Using Observation-Based Data Products

Surveys in Geophysics - Sun, 12/01/2024 - 00:00
Abstract

Accurate diagnosis of regional atmospheric and surface energy budgets is critical for understanding the spatial distribution of heat uptake associated with the Earth’s energy imbalance (EEI). This contribution discusses frameworks and methods for consistent evaluation of key quantities of those budgets using observationally constrained data sets. It thereby touches upon assumptions made in data products which have implications for these evaluations. We evaluate 2001–2020 average regional total (TE) and dry static energy (DSE) budgets using satellite-based and reanalysis data. For the first time, a consistent framework is applied to the ensemble of the 5th generation European Reanalysis (ERA5), version 2 of modern-era retrospective analysis for research and applications (MERRA-2), and the Japanese 55-year Reanalysis (JRA55). Uncertainties of the computed budgets are assessed through inter-product spread and evaluation of physical constraints. Furthermore, we use the TE budget to infer fields of net surface energy flux. Results indicate biases < 1 W/m2 on the global, < 5 W/m2 on the continental, and ~ 15 W/m2 on the regional scale. Inferred net surface energy fluxes exhibit reduced large-scale biases compared to surface flux data based on remote sensing and models. We use the DSE budget to infer atmospheric diabatic heating from condensational processes. Comparison to observation-based precipitation data indicates larger uncertainties (10–15 Wm−2 globally) in the DSE budget compared to the TE budget, which is reflected by increased spread in reanalysis-based fields. Continued validation efforts of atmospheric energy budgets are needed to document progress in new and upcoming observational products, and to understand their limitations when performing EEI research.

Categories:

METEOSAT Long-Term Observations Reveal Changes in Convective Organization Over Tropical Africa and Atlantic Ocean

Surveys in Geophysics - Sun, 12/01/2024 - 00:00
Abstract

In the tropics, deep convection, which is often organized into convective systems, plays a crucial role in the water and energy cycles by significantly contributing to surface precipitation and forming upper-level ice clouds. The arrangement of these deep convective systems, as well as their individual properties, has recently been recognized as a key feature of the tropical climate. Using data from Africa and the tropical Atlantic Ocean as a case study, recent shifts in convective organization have been analyzed through a well-curated, unique record of METEOSAT observations spanning four decades. The findings indicate a significant shift in the occurrence of deep convective systems, characterized by a decrease in large, short-lived systems and an increase in smaller, longer-lived ones. This shift, combined with a nearly constant deep cloud fraction over the same period, highlights a notable change in convective organization. These new observational insights are valuable for refining emerging kilometer-scale climate models that accurately represent individual convective systems but struggle to realistically simulate their overall arrangement.

Categories:

An Abrupt Decline in Global Terrestrial Water Storage and Its Relationship with Sea Level Change

Surveys in Geophysics - Sun, 12/01/2024 - 00:00
Abstract

As observed by the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow On (GRACE-FO) missions, global terrestrial water storage (TWS), excluding ice sheets and glaciers, declined rapidly between May 2014 and March 2016. By 2023, it had not yet recovered, with the upper end of its range remaining 1 cm equivalent height of water below the upper end of the earlier range. Beginning with a record-setting drought in northeastern South America, a series of droughts on five continents helped to prevent global TWS from rebounding. While back-to-back El Niño events are largely responsible for the South American drought and others in the 2014–2016 timeframe, the possibility exists that global warming has contributed to a net drying of the land since then, through enhanced evapotranspiration and increasing frequency and intensity of drought. Corollary to the decline in global TWS since 2015 has been a rise in barystatic sea level (i.e., global mean ocean mass). However, we find no evidence that it is anything other than a coincidence that, also in 2015, two estimates of barystatic sea level change, one from GRACE/FO and the other from a combination of satellite altimetry and Argo float ocean temperature measurements, began to diverge. Herein, we discuss both the mechanisms that account for the abrupt decline in terrestrial water storage and the possible explanations for the divergence of the barystatic sea level change estimates.

Categories:

North Atlantic Heat Transport Convergence Derived from a Regional Energy Budget Using Different Ocean Heat Content Estimates

Surveys in Geophysics - Sun, 12/01/2024 - 00:00
Abstract

This study uses an oceanic energy budget to estimate the ocean heat transport convergence in the North Atlantic during 2005–2018. The horizontal convergence of the ocean heat transport is estimated using ocean heat content tendency primarily derived from satellite altimetry combined with space gravimetry. The net surface energy fluxes are inferred from mass-corrected divergence of atmospheric energy transport and tendency of the ECMWF ERA5 reanalysis combined with top-of-the-atmosphere radiative fluxes from the clouds and the Earth’s radiant energy system project. The indirectly estimated horizontal convergence of the ocean heat transport is integrated between the rapid climate change-meridional overturning circulation and heatflux array (RAPID) section at 26.5°N (operating since 2004) and the overturning in the subpolar north atlantic program (OSNAP) section, situated at 53°–60°N (operating since 2014). This is to validate the ocean heat transport convergence estimate against an independent estimate derived from RAPID and OSNAP in-situ measurements. The mean ocean energy budget of the North Atlantic is closed to within ± 0.25 PW between RAPID and OSNAP sections. The mean oceanic heat transport convergence between these sections is 0.58 ± 0.25 PW, which agrees well with observed section transports. Interannual variability of the inferred oceanic heat transport convergence is also in reasonable agreement with the interannual variability observed at RAPID and OSNAP, with a correlation of 0.54 between annual time series. The correlation increases to 0.67 for biannual time series. Other estimates of the ocean energy budget based on ocean heat content tendency derived from various methods give similar results. Despite a large spread, the correlation is always significant meaning the results are robust against the method to estimate the ocean heat content tendency.

Categories:

A Multi-satellite Perspective on “Hot Tower” Characteristics in the Equatorial Trough Zone

Surveys in Geophysics - Sun, 12/01/2024 - 00:00
Abstract

In 1979, Herbert Riehl and Joanne Simpson (Malkus) analytically estimated that 1600–2400 undilute convective cores vertically transport energy to the tropopause at any given time within a region where upper-tropospheric energy is only exported from the tropics. The focus of this paper is to update this estimate using modern satellite observations, compare hot tower frequency and intensity characteristics to all deep convective cores that reach the upper troposphere, and document hot tower spatiotemporal variability in relation to precipitation and high cloud properties within the tropical trough zone (between 13 °S and 19 °N). Cloud vertical profiles from CloudSat and CALIPSO measurements supply convective core diameters and proxies for intensity and convective activity, and these proxies are augmented with brightness temperature data from geostationary satellite observations, precipitation information from IMERG, and cloud radiative properties from CERES. Less than 35% of all deep cores are classified as hot towers, and we estimate that 800–1700 hot towers occur at any given time over the course of a day, with the mean maximum core and hot tower frequency occurring at the time of year when peak convective intensity and precipitation occur. Convective objects that contain hot towers frequently contain multiple cores, and the largest systems with five or more distinct cores most frequently occur in regions where organized mesoscale convective systems and the highest climatological mean rain rates are known to occur. Analysis of co-located radar and infrared brightness temperatures reveals that passive observations alone are not sufficient to unambiguously distinguish hot towers using simple brightness temperature thresholds.

Categories:

A Geostationary Satellite-Based Approach to Estimate Convective Mass Flux and Revisit the Hot Tower Hypothesis

Surveys in Geophysics - Sun, 12/01/2024 - 00:00
Abstract

This study aims to revisit the classic “hot tower” hypothesis proposed by Riehl and Simpson (Malkus) in 1958 and revisited in 1979. Our investigation centers on the convective mass flux of hot towers within the tropical trough zone, using geostationary (GEO) satellite data and an innovative analysis technique, known as ML16, which integrates various data sources, including hot tower heights, ambient profiles, and a plume model, to determine convective mass flux. The GEO-based ML16 approach is evaluated against collocated ground-based radar wind profiler observations, showing broad agreement. Our GEO-based estimate of hot tower convective mass flux, 2.8 × 1011–3.4 × 1011 kg s−1, is similar to the revisited estimate in Riehl and Simpson (1979), 2.6–3.0 × 1011 kg s−1. Additionally, our analysis gives a median count of around 550 hot towers with a median size of about 11 km, in contrast to the previous estimates of 1600–2400 hot towers, each characterized by a fixed size of 5 km. We discuss the causes of these discrepancies, emphasizing the fundamental differences between the two approaches in characterizing tropical hot towers. While both approaches have various uncertainties, the evidence suggests that greater credibility should be placed on results derived from direct satellite observations. Finally, we identify future opportunities in Earth Observations that will provide more accurate measurements, enabling further evaluation of the role played by tropical hot towers in mass transport.

Categories:

Closure of Earth’s Global Seasonal Cycle of Energy Storage

Surveys in Geophysics - Sun, 12/01/2024 - 00:00
Abstract

The global seasonal cycle of energy in Earth’s climate system is quantified using observations and reanalyses. After removing long-term trends, net energy entering and exiting the climate system at the top of the atmosphere (TOA) should agree with the sum of energy entering and exiting the ocean, atmosphere, land, and ice over the course of an average year. Achieving such a balanced budget with observations has been challenging. Disagreements have been attributed previously to sparse observations in the high-latitude oceans. However, limiting the local vertical integration of new global ocean heat content estimates to the depth to which seasonal heat energy is stored, rather than integrating to 2000 m everywhere as done previously, allows closure of the global seasonal energy budget within statistical uncertainties. The seasonal cycle of energy storage is largest in the ocean, peaking in April because ocean area is largest in the Southern Hemisphere and the ocean’s thermal inertia causes a lag with respect to the austral summer solstice. Seasonal cycles in energy storage in the atmosphere and land are smaller, but peak in July and September, respectively, because there is more land in the Northern Hemisphere, and the land has more thermal inertia than the atmosphere. Global seasonal energy storage by ice is small, so the atmosphere and land partially offset ocean energy storage in the global integral, with their sum matching time-integrated net global TOA energy fluxes over the seasonal cycle within uncertainties, and both peaking in April.

Categories:

Lessons Learned from the Updated GEWEX Cloud Assessment Database

Surveys in Geophysics - Sun, 12/01/2024 - 00:00
Abstract

Since the first Global Energy and Water Exchanges cloud assessment a decade ago, existing cloud property retrievals have been revised and new retrievals have been developed. The new global long-term cloud datasets show, in general, similar results to those of the previous assessment. A notable exception is the reduced cloud amount provided by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Science Team, resulting from an improved aerosol–cloud distinction. Height, opacity and thermodynamic phase determine the radiative effect of clouds. Their distributions as well as relative occurrences of cloud types distinguished by height and optical depth are discussed. The similar results of the two assessments indicate that further improvement, in particular on vertical cloud layering, can only be achieved by combining complementary information. We suggest such combination methods to estimate the amount of all clouds within the atmospheric column, including those hidden by clouds aloft. The results compare well with those from CloudSat-CALIPSO radar–lidar geometrical profiles as well as with results from the International Satellite Cloud Climatology Project (ISCCP) corrected by the cloud vertical layer model, which is used for the computation of the ISCCP-derived radiative fluxes. Furthermore, we highlight studies on cloud monitoring using the information from the histograms of the database and give guidelines for: (1) the use of satellite-retrieved cloud properties in climate studies and climate model evaluation and (2) improved retrieval strategies.

Categories:

Observational Assessment of Changes in Earth’s Energy Imbalance Since 2000

Surveys in Geophysics - Sun, 12/01/2024 - 00:00
Abstract

Satellite observations from the Clouds and the Earth’s Radiant Energy System show that Earth’s energy imbalance has doubled from 0.5 ± 0.2 Wm−2 during the first 10 years of this century to 1.0 ± 0.2 Wm−2 during the past decade. The increase is the result of a 0.9 ± 0.3 Wm−2 increase absorbed solar radiation (ASR) that is partially offset by a 0.4 ± 0.25 Wm−2 increase in outgoing longwave radiation (OLR). Despite marked differences in ASR and OLR trends during the hiatus (2000–2010), transition-to-El Niño (2010–2016) and post-El Niño (2016–2022) periods, trends in net top-of-atmosphere flux (NET) remain within 0.1 Wm−2 per decade of one another, implying a steady acceleration of climate warming. Northern and southern hemisphere trends in NET are consistent to 0.06 ± 0.31 Wm−2 per decade due to a compensation between weak ASR and OLR hemispheric trend differences of opposite sign. We find that large decreases in stratocumulus and middle clouds over the sub-tropics and decreases in low and middle clouds at mid-latitudes are the primary reasons for increasing ASR trends in the northern hemisphere (NH). These changes are especially large over the eastern and northern Pacific Ocean, and coincide with large increases in sea-surface temperature (SST). The decrease in cloud fraction and higher SSTs over the NH sub-tropics lead to a significant increase in OLR from cloud-free regions, which partially compensate for the NH ASR increase. Decreases in middle cloud reflection and a weaker reduction in low-cloud reflection account for the increase in ASR in the southern hemisphere, while OLR changes are weak. Changes in cloud cover in response to SST increases imply a feedback to climate change yet a contribution from radiative forcing or internal variability cannot be ruled out.

Categories:

Tropical Deep Convection, Cloud Feedbacks and Climate Sensitivity

Surveys in Geophysics - Sun, 12/01/2024 - 00:00
Abstract

This paper is concerned with how the diabatically-forced overturning circulations of the atmosphere, established by the deep convection within the tropical trough zone (TTZ), first introduced by Riehl and (Malkus) Simpson, in Contr Atmos Phys 52:287–305 (1979), fundamentally shape the distributions of tropical and subtropical cloudiness and the changes to cloudiness as Earth warms. The study first draws on an analysis of a range of observations to understand the connections between the energetics of the TTZ, convection and clouds. These observations reveal a tight coupling of the two main components of the diabatic heating, the cloud component of radiative heating, shaped mostly by high clouds formed by deep convection, and the latent heating associated with the precipitation. Interannual variability of the TTZ reveals a marked variation that connects the depth of the tropical troposphere, the depth of convection, the thickness of high clouds and the TOA radiative imbalance. The study examines connections between this convective zone and cloud changes further afield in the context of CMIP6 model experiments of climate warming. The warming realized in the CMIP6 SSP5-8.5 scenario multi-model experiments, for example, produces an enhanced Hadley circulation with increased heating in the zone of tropical deep convection and increased radiative cooling and subsidence in the subtropical regions. This impacts low cloud changes and in turn the model warming response through low cloud feedbacks. The pattern of warming produced by models, also influenced by convection in the tropical region, has a profound influence on the projected global warming.

Categories:

The Global Energy Balance as Represented in Atmospheric Reanalyses

Surveys in Geophysics - Sun, 12/01/2024 - 00:00
Abstract

In this study, we investigate the representation of the global mean energy balance components in 10 atmospheric reanalyses, and compare their magnitudes with recent reference estimates as well as the ones simulated by the latest generation of climate models from the 6th phase of the coupled model intercomparison project (CMIP6). Despite the assimilation of comprehensive observational data in reanalyses, the spread amongst the magnitudes of their global energy balance components generally remains substantial, up to more than 20 Wm−2 in some quantities, and their consistency is typically not higher than amongst the much less observationally constrained CMIP6 models. Relative spreads are particularly large in the reanalysis global mean latent heat fluxes (exceeding 20%) and associated intensity of the global water cycle, as well as in the energy imbalances at the top-of-atmosphere and surface. A comparison of reanalysis runs in full assimilation mode with corresponding runs constrained only by sea surface temperatures reveals marginal differences in their global mean energy balance components. This indicates that discrepancies in the global energy balance components caused by the different model formulations amongst the reanalyses are hardly alleviated by the imposed observational constraints from the assimilation process. Similar to climate models, reanalyses overestimate the global mean surface downward shortwave radiation and underestimate the surface downward longwave radiation by 3–7 Wm−2. While reanalyses are of tremendous value as references for many atmospheric parameters, they currently may not be suited to serve as references for the magnitudes of the global mean energy balance components.

Categories:

Trends and Variability in Earth’s Energy Imbalance and Ocean Heat Uptake Since 2005

Surveys in Geophysics - Sun, 12/01/2024 - 00:00
Abstract

Earth’s energy imbalance (EEI) is a fundamental metric of global Earth system change, quantifying the cumulative impact of natural and anthropogenic radiative forcings and feedback. To date, the most precise measurements of EEI change are obtained through radiometric observations at the top of the atmosphere (TOA), while the quantification of EEI absolute magnitude is facilitated through heat inventory analysis, where ~ 90% of heat uptake manifests as an increase in ocean heat content (OHC). Various international groups provide OHC datasets derived from in situ and satellite observations, as well as from reanalyses ingesting many available observations. The WCRP formed the GEWEX-EEI Assessment Working Group to better understand discrepancies, uncertainties and reconcile current knowledge of EEI magnitude, variability and trends. Here, 21 OHC datasets and ocean heat uptake (OHU) rates are intercompared, providing OHU estimates ranging between 0.40 ± 0.12 and 0.96 ± 0.08 W m−2 (2005–2019), a spread that is slightly reduced when unequal ocean sampling is accounted for, and that is largely attributable to differing source data, mapping methods and quality control procedures. The rate of increase in OHU varies substantially between − 0.03 ± 0.13 (reanalysis product) and 1.1 ± 0.6 W m−2 dec−1 (satellite product). Products that either more regularly observe (satellites) or fill in situ data-sparse regions based on additional physical knowledge (some reanalysis and hybrid products) tend to track radiometric EEI variability better than purely in situ-based OHC products. This paper also examines zonal trends in TOA radiative fluxes and the impact of data gaps on trend estimates. The GEWEX-EEI community aims to refine their assessment studies, to forge a path toward best practices, e.g., in uncertainty quantification, and to formulate recommendations for future activities.

Categories:

Cycle slip detection and repair method towards multi-frequency BDS-3/INS tightly coupled integration in kinematic surveying

Journal of Geodesy - Sat, 11/30/2024 - 00:00
Abstract

Carrier phase integer ambiguities must be determined for BDS-3/inertial navigation system (INS) tightly coupled (TC) integration to achieve centimetre-level positioning accuracy. However, cycle slip breaks the consistency of the integer ambiguities. Conventional multi-frequency cycle slip methods use the pseudorange; thus, requiring improvement when applied to kinematic situations. Furthermore, a concise and nonprior information-dependent model is crucial for real-time processing. In this study, an inertial-aided BDS-3 cycle slip detection and repair (I-CDR) method was developed. First, a BDS-3/INS TC model with I-CDR was created. The ionospheric delays were modelled as part of the TC states; therefore, they could be estimated and eliminated. Investigations were conducted on the effects of carrier phase noise, residual ionosphere delay, and INS-predicted position error on combined cycle slip detection (CCD) accuracy. The optimal CCDs under various frequency available configurations were determined. The effectiveness of I-CDR was demonstrated using land vehicle test data. The false alarm ratio was less than 1.0%, and the missed detection ratio was almost zero even in situations with challenging abundant 1-cycle slips in random epochs. Furthermore, the right determination ratio reached 100%. In addition, BDS-3 signal loss-recovery cases were simulated, and all cycle slips for all satellites could be repaired within 40s. I-CDR exhibits outstanding cycle slip detection and repair performance for dense 1-cycle slip and signal loss-recovery cases, demonstrating its suitability for BDS-3/INS TC integration.

Retrieval of refractivity fields from GNSS tropospheric delays: theoretical and data-based evaluation of collocation methods and comparisons with GNSS tomography

Journal of Geodesy - Sat, 11/30/2024 - 00:00
Abstract

This paper focuses on the retrieval of refractivity fields from GNSS measurements by means of least-squares collocation. Collocation adjustment estimates parameters that relate delays and refractivity without relying on a grid. It contains functional and stochastic models that define the characteristics of the retrieved refractivity fields. This work aims at emphasizing the capabilities and limitations of the collocation method in modeling refractivity and to present it as a valuable alternative to GNSS tomography. Initially, we analyze the stochastic models in collocation and compare the theoretical errors of collocation with those of tomography. We emphasize the low variability of collocation formal variances/covariances compared to tomography and its lower dependence on a-priori fields. Then, based on real and simulated data, we investigate the importance of station resolution and station heights for collocation. Increasing the network resolution, for example, from 10 to 2 km, results in improved a-posteriori statistics, including a 10% reduction in the error statistic for the retrieved refractivity up to 6 km. In addition, using additional stations at higher altitudes has an impact on the retrieved refractivity fields of about 1 ppm in terms of standard deviation up to 6 km, and a bias reduction of more than 3 ppm up to 3 km. Furthermore, we compare refractivity fields retrieved through tomography and collocation, where data of the COSMO weather model are utilized in a closed-loop validation mode to simulate tropospheric delays and validate the retrieved profiles. While tomography estimates are less biased, collocation captures relative changes in refractivity more effectively among the voxels within one height level. Finally, we apply tomography and collocation to test their capabilities to detect an approaching weather front. Both methods can sense the weather front, but their atmospheric structures appear more similar when the GNSS network has a well-distributed height coverage.

Estimating three-dimensional displacements with InSAR: the strapdown approach

Journal of Geodesy - Sat, 11/30/2024 - 00:00
Abstract

Deformation phenomena on Earth are inherently three dimensional. With SAR interferometry (InSAR), in many practical situations the maximum number of observations is two (ascending and descending), resulting in an infinite number of possible displacement estimates. Here we propose a practical solution to this underdeterminancy problem in the form of the strapdown approach. With the strapdown approach, it is possible to obtain “3D-global/2D-local” solutions, by using minimal and largely undisputed contextual information, on the expected driving mechanisms and/or spatial geometry. It is a generic method that defines a local reference system with transversal, longitudinal, and normal (TLN) axes, with displacement occurring in the transversal-normal plane only. Since the orientation of the local frame is based on the physics of the problem at hand, the strapdown approach gives physically more relevant estimates compared to conventional approaches. Moreover, using an a-priori uncertainty approximation on the orientation of the local frame it is possible to assess the precision of the final estimates. As a result, appropriate cartographic visualization using a vector map with confidence ellipses enables an improved interpretation of the results.

Flatness constraints in the estimation of GNSS satellite antenna phase center offsets and variations

Journal of Geodesy - Wed, 11/27/2024 - 00:00
Abstract

Accurate information on satellite antenna phase center offsets (PCOs) and phase variations (PVs) is indispensable for high-precision geodetic applications. In the absence of consistent pre-flight calibrations, satellite antenna PCOs and PVs of global navigation satellite systems are commonly estimated based on observations from a global network, constraining the scale to a given reference frame. As part of this estimation, flatness and zero-mean conditions need to be applied to unambiguously separate PCOs, PVs, and constant phase ambiguities. Within this study, we analytically investigate the impact of different boresight-angle-dependent weighting functions for PV minimization, and we compare antenna models generated with different observation-based weighting schemes with those based on uniform weighting. For the case of the GPS IIR/-M and III satellites, systematic differences of 10 mm in the PVs and 65 cm in the corresponding PCOs are identified. In addition, new antenna models for the different blocks of BeiDou-3 satellites in medium Earth orbit are derived using different processing schemes. As a drawback of traditional approaches estimating PCOs and PVs consecutively in distinct steps, it is shown that different, albeit self-consistent, PCO/PV pairs may result depending on whether PCOs or PVs are estimated first. This apparent discrepancy can be attributed to potentially inconsistent weighting functions in the individual processing steps. Use of a single-step process is therefore proposed, in which a dedicated constraint for PCO-PV separation is applied in the solution of the normal equations. Finally, the impact of neglecting phase patterns in precise point positioning applications is investigated. In addition to an overall increase of the position scatter, the occurrence of systematic height biases is illustrated. While observation-based weighting in the pattern estimation can help to avoid such biases, the possible benefit depends critically on the specific elevation-dependent weighting applied in the user’s positioning model. As such, the practical advantage of such antenna models would remain limited, and uniform weighting is recommended as a lean and transparent approach for the pattern estimation of satellite antenna models from observations.

A processing strategy for handling latency of PPP-RTK corrections

Journal of Geodesy - Tue, 11/26/2024 - 00:00
Abstract

An attractive feature of PPP-RTK is the possibility of reducing the amount of data that needs to be transferred to users. By leveraging the state-space Representation (SSR) of the corrections, the correction provider (i.e., a GNSS network) can consider distinct transfer rates for each of the individual corrections according to their temporal characteristics. Reducing the transfer rates comes at the cost of delivering time-delayed corrections, urging the user to time predict the corrections to bridge the gap between the corrections’ generation time and the positioning time. Consequently, the user Kalman filter needs to be equipped with a strategy to account for the errors caused by such predictions, minimizing the precision loss of the user parameter solutions. In this contribution, we apply a processing strategy for both the network and user filters to handle the latency of corrections. This enables the network to update corrections over longer time-intervals. To have the strategy applicable to regional networks, an ionosphere-weighted model is adopted for the corresponding observations, delivering minimum-variance spatially predicted ionospheric corrections to users. It is shown that certain components of the network filter’s dynamic model are duplicated and should be excluded from processing. To illustrate the performance of the strategy at work, three globally distributed regional networks are employed, and maximum correction latencies to meet different positioning criteria are evaluated. In terms of both the positioning precision and time-to-first-fix (TTFF), the strategy is numerically shown to outperform the user processing case in which the uncertainty of corrections is discarded.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer