Abstract
This study investigates Pc5 pulsations during the St. Patrick’s Day geomagnetic storm of March 17, 2015, using ground-based magnetic data from the SER station in Chile (29.827° S, 71.261° W), satellite observations, and geomagnetic indices. Pc5 pulsations, with frequencies of 1.67–6.67 mHz, are influenced by various factors, including the Kelvin–Helmholtz instability, field line resonance effects, and solar wind dynamics. During this storm ignificant variations in solar wind parameters were observed, with positive correlations between Pc5 pulsations and parameters like temperature, density, speed, and pressure, especially during the main and recovery phases Pc5 pulsations exhibited large amplitudes during the storm, potentially driven by magnetospheric MHD waveguide/cavity mode and induced by the substantial compression of the geomagnetic field from the solar wind. Our results show the appearance of Pc5 pulsations at low latitudes and strong correlations between solar wind parameters and Pc5 signals during all storm phases, with maximum correlation coefficients of 0.98.