Feed aggregator

Comparison of Very Low Frequency Wave Intensities Measured by a Low‐Altitude Spacecraft and on the Ground

JGR:Space physics - Sat, 07/06/2024 - 07:00
Abstract

We evaluate average wave intensities at frequencies up to 10 kHz measured by two ground stations in Canada and two others in Finland at auroral and subauroral latitudes over a full year, as well as by the low-altitude DEMETER spacecraft during the years 2004–2010. Lightning location and energy data obtained by the World Wide Lightning Location Network, along with geomagnetic activity characterized by the Kp index, are further used. Latitudinal, diurnal, and annual variations are analyzed, and the global intensities measured on the ground and by the spacecraft are systematically compared for the first time. We show that lightning-generated waves often dominate the measured wave intensities, particularly during the night, in summer, and at higher frequencies. DEMETER observations, supported by ray-tracing analysis, reveal a significant role of nonducted lightning-generated whistler propagation between the hemispheres. Finally, the wave intensity response to geomagnetic activity variations is quite different on the ground compared to in space. While spacecraft-measured wave intensities are considerably larger during periods of enhanced geomagnetic activity, the ground-based intensities are only sporadically enhanced during geomagnetically active periods.

Observations of High Definition Symmetric Quasi‐Periodic Scintillations in the Mid‐Latitude Ionosphere With LOFAR

JGR:Space physics - Sat, 07/06/2024 - 07:00
Abstract

We present broadband ionospheric scintillation observations of highly defined symmetric quasi-periodic scintillations (QPS: Maruyama, 1991, https://doi.org/10.1029/91rs00357) caused by plasma structures in the mid-latitude ionosphere using the LOw Frequency ARray (LOFAR: van Haarlem et al., 2013, https://doi.org/10.1051/0004-6361/201220873). Two case studies are shown, one from 15 December 2016, and one from 30 January 2018, in which well-defined main signal fades are observed to be bounded by secondary diffraction fringing. The ionospheric plasma structures effectively behave as a Fresnel obstacle, in which steep plasma gradients at the periphery result in a series of decreasing intensity interference fringes, while the center of the structures largely block the incoming radio signal altogether. In particular, the broadband observing capabilities of LOFAR permit us to see considerable frequency dependent behavior in the QPSs which, to our knowledge, is a new result. We extract some of the clearest examples of scintillation arcs reported in an ionospheric context, from delay-Doppler spectral analysis of these two events. These arcs permit the extraction of propagation velocities for the plasma structures causing the QPSs ranging from 50 to 00 m s−1, depending on the assumed altitude. The spacing between the individual plasma structures ranges between 5 and 20 km. The periodicities of the main signal fades in each event and, in the case of the 2018 data, co-temporal ionosonde data, suggest the propagation of the plasma structures causing the QPSs are in the E-region. Each of the two events is accurately reproduced using a thin screen phase model. Individual signal fades and enhancements were modeled using small variations in total electron content (TEC) amplitudes of order 1 mTECu, demonstrating the sensitivity of LOFAR to very small fluctuations in ionospheric plasma density. To our knowledge these results are among the most detailed observations and modeling of QPSs in the literature.

SHARP Shock Database

JGR:Space physics - Sat, 07/06/2024 - 07:00
Abstract

Despite more than half a century of Collisionless shock (CS) research, our understanding of the processes of the shock energy dissipation into the charge particle heating and acceleration remains incomplete. To help to address the problem of the rate of the data analysis on CSs being well below of the rate of the data acquisition, an open-source high-level database of shocks and a centralized source of advanced tools for the purpose of analyzing shock structure and dynamics have been developed. The database is called SHARP shock database by the name of the project SHARP (Shocks: structure, AcceleRation, dissiPation) funded by the European Union's Horizon 2020 program. The SHARP shock database contains shock crossings and corresponding parameters obtained from Cluster and MMS (Magnetospheric Multiscale) missions for terrestrial bow shocks, THEMIS (Time History of Events and Macroscale Interactions during Substorms)/ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun) missions for interplanetary shocks, and MAVEN (Mars Atmosphere and Volatile EvolutioN) and VEX (Venus Express) missions for shocks at non-magnetized planets. The SHARP shock database can be accessed via https://sharp.fmi.fi/shock-database/.

OI 630.0 nm Post‐Sunset Emission Enhancement as an Effect of Tidal Activity Over Low‐Latitudes

JGR:Space physics - Sat, 07/06/2024 - 07:00
Abstract

The OI 630.0 nm airglow emission variability provides salient information on the dynamical changes taking place in the upper atmosphere at around 250 km. The emission rates vary with the changes in the ambient electron densities and the neutral constituents that are associated with these emissions. On several occasions, enhancements in these emissions are observed during post-sunset hours, around 21 local time (LT), as measured from Mt. Abu (24.6°N, 72.7°E, 19°N Mag), a low-latitude location at Indian longitudes. These enhancements occur following the typical monotonic decrease in emission intensity after sunset. The presence of poleward meridional wind preceded by cessation and reversal of equatorward wind at the post-sunset hours was shown to be the cause for such observed emission enhancements in an earlier study. In this study, the cause of such reversal in meridional winds during post-sunset hours has been investigated using the variation in electron densities and meridional winds simulated by the Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension (WACCM-X), which also shows enhancements in electron densities similar to those observed in the post-sunset OI 630.0 nm nightglow emissions, and simultaneous reversal in meridional winds as well. The amplitudes and phases of different components of tides obtained from WACCM-X meridional winds reveal a significant contribution of higher-order tides, especially, quarter-diurnal tides, to the observed reversal in the meridional winds during post-sunset hours.

Quantitative Sub-Ice and Marine Tracing of Antarctic Sediment Provenance (TASP v1.0)

Geoscientific Model Development - Fri, 07/05/2024 - 17:44
Quantitative Sub-Ice and Marine Tracing of Antarctic Sediment Provenance (TASP v1.0)
Jim Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin Siegert, and Liam Holder
Geosci. Model Dev. Discuss., https//doi.org/10.5194/gmd-2024-104,2024
Preprint under review for GMD (discussion: open, 0 comments)
Ice sheet models can help predict how Antarctica's ice sheets respond to environmental change, and such models benefit from comparison to geological data. Here, we use an ice sheet model output, plus other data, to predict the erosion of debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.

Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field-widened Michelson interferometers

Atmos. Meas. techniques - Fri, 07/05/2024 - 16:33
Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field-widened Michelson interferometers
Samuel K. Kristoffersen, William E. Ward, and Chris E. Meek
Atmos. Meas. Tech., 17, 3995–4014, https://doi.org/10.5194/amt-17-3995-2024, 2024
In this paper, the relationship between observations from two instruments, a meteor radar and a field-widened Michelson interferometer (ERWIN) which provide complementary information on this region, is investigated. On average the ratio of ERWIN winds to meteor radar winds is ∼ 0.7. Differences between the wind observations may be caused by variations in the airglow brightness associated with dissipating gravity waves.

Remagnetization of Upper Triassic Limestone From the Central Lhasa Terrane (Tibet): Identification, Mechanisms, and Implications for Diagnosing Secondary Remanent Magnetization in Carbonate Rocks

JGR–Solid Earth - Fri, 07/05/2024 - 14:43
Abstract

Carbonate rocks, widely used for quantifying paleolatitude of the Gondwana-derived terranes on the Tibetan Plateau and the geodynamic evolution of the Tethyan Oceans, are prone to remagnetization. However, diagnosing such secondary remanent magnetization is difficult and the mistakes have induced confusion in paleogeographic reconstructions. To evaluate if the Upper Triassic limestones of the Duoburi Formation from the Lhasa terrane carry a primary remanence, we report comprehensive rock magnetic, diffuse reflectance spectroscopic, and petrographic results of these rocks. We discover that magnetic carriers vary systematically from magnetite to magnetite plus minor hematite/goethite to hematite/goethite plus minor magnetite with change of rock color and demagnetization behavior of the specimens. Most magnetite and all hematite/goethite grains have clear authigenic origin and were possibly formed during oxidation of early diagenetic pyrite. Such a process was likely assisted by oxic fluid circulation as shown by omnipresent calcite veins within the rocks. These authigenic iron oxides have widely distributed grain sizes with most of them being superparamagnetic at room temperature. Detrital (titano)magnetite is also recognized in some specimens, but its concentration is much lower than that of the authigenic magnetic grains. Based on these results, we conclude that limestone from the Duoburi Formation was remagnetized due to fluid circulation during late diagenesis. We discuss criteria used for diagnosing remagnetization in carbonate rocks, and suggest that a robust evaluation of the remanence origin should integrate field tests, statistics of the remanence direction, rock magnetic properties, and petrographic observations with the limits of each criterion being carefully considered.

Northern Hemisphere Stratosphere‐Troposphere Circulation Change in CMIP6 Models: 2. Mechanisms and Sources of the Spread

JGR–Atmospheres - Fri, 07/05/2024 - 10:40
Abstract

We analyze the sources for spread in the response of the Northern Hemisphere wintertime stratospheric polar vortex (SPV) to global warming in Climate Model Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6) model projections. About half of the intermodel spread in SPV projections by CMIP6 models, but less than a third in CMIP5 models, can be attributed to the intermodel spread in stationary planetary wave driving. In CMIP6, SPV weakening is mostly driven by increased upward wave flux from the troposphere, while SPV strengthening is associated with increased equatorward wave propagation away from the polar stratosphere. We test hypothesized factors contributing to changes in the upward and equatorward planetary wave fluxes and show that an across-model regression using projected global warming rates, strengthening of the subtropical jet and basic state lower stratospheric wind biases as predictors can explain nearly the same fraction in the CMIP6 SPV spread as the planetary wave driving (r = 0.67). The dependence of the SPV spread on the model biases in the basic state winds offers a possible emergent constraint; however, a large uncertainty prevents a substantial reduction of the projected SPV spread. The lack of this dependence in CMIP5 further calls for better understanding of underlying causes. Our results improve understanding of projected SPV uncertainty; however, further narrowing of the uncertainty remains challenging.

How Critical Is the Accuracy of the Atmospheric Transport Modeling to Improve the Urban CO2 Emission in India?—A Lagrangian‐Based Approach

JGR–Atmospheres - Fri, 07/05/2024 - 10:20
Abstract

Anthropogenic CO2 emission reduction strategies depend on how well we track emission enhancements at the urban scale. The estimation system, based on inverse modeling, relies on our knowledge of atmospheric transport and prior flux distributions. Hence, the analysis framework must account for uncertainties associated with each component in order to interpret the variations in observed CO2. Using an ensemble of simulations, we quantify the uncertainties in simulating anthropogenic CO2 mixing ratio enhancements at 15 locations in India. Differences in the representation of transport mechanisms and prior emission in the forward model induce a consistently large model spread of 62.2% and 41.9%, respectively, in the simulated mixing ratio over cities. The analysis reports an average uncertainty of 2.2 ppm with a maximum of 8 ppm for representing diurnally averaged anthropogenic CO2 enhancement. Diurnal variations in emissions and transport induce a rectification effect in those enhancements. The outcome of this study can thus inform future atmospheric CO2 inversion modeling at an urban scale on the expected forward model uncertainties, which are the essential components in the Bayesian inversion framework, typically lacking in the Indian region. The first-order inversion experiments show that the change in the transport model induces significant uncertainty (up to 84.9%) in anthropogenic CO2 flux estimation at the national scale. Hence, the confidence level of inverse-based emission estimation in India depends considerably on the accuracy of atmospheric transport modeling.

Estimation of Downward Heat Flux Into the F‐Region From the Inner‐Magnetosphere During Stable Auroral Red (SAR) Arc Events in the Daytime Obtained Using OI 630.0 nm Red‐Line Emissions

JGR:Space physics - Fri, 07/05/2024 - 07:00
Abstract

Stable Auroral Red (SAR) arcs are enhanced OI 630.0 nm emissions formed due to an increased electron temperature (Te) near the equatorward wall of mid-latitude trough during geomagnetic disturbances. The Te enhancement associated with SAR arcs is driven by electron heating through heat flux precipitation from near plasmapause region to ionospheric F-region via heat conduction. Although Te enhancements have been reported by radar/satellite measurements along with increased 630.0 nm brightness during SAR arc events, measurements of corresponding heat flux are sparse, and almost none in the daytime. This work presents the results on the estimation of electron heat flux incident during SAR arcs formed during daytime obtained by a comprehensive suite of measurements, and forward modeling. We present observations of several SAR arc events when the ground-based OI 630.0 nm emissions were larger than the model values during disturbed periods and were found to be existing in conjunction with increased Te at the altitude of DMSP (∼840 km). Forward modeling was carried out to determine the values of Te that would cause an enhancement in these emissions during daytime at much lower altitudes (∼400–500 km). These values of Te were used to estimate the required electron heat flux varying in the range of ∼1.0–4.6 × 1010 eV-cm−2-s−1. These results present the first estimates of F-region heat flux enabled using ground-based OI 630.0 nm emissions and open a new approach in the investigations of energy released into the ionosphere through heat conduction for daytime conditions during geomagnetically disturbed periods.

Variability in the Electrodynamics of the Small Scale Auroral Arc

JGR:Space physics - Fri, 07/05/2024 - 07:00
Abstract

A statistical study has been made of dynamic small-scale auroral events in order to understand the drivers of the large variability in the electrodynamics of auroral arcs at fine scales. We used the Auroral Structure and Kinetics (ASK) instrument, located on Svalbard, in order to measure various electrodynamic properties of fine scale auroral arcs. We performed Spearman and Kendall statistical tests and found two significant correlations. The first is between the mean precipitation flux and the variability of flux, which we assume is because of the dynamic and bursty nature of the acceleration mechanism and its dependence on Alfvén waves. The second correlation is between the variability of the precipitating electron flux and the variability of the tangential component of the electric field close to the arc and perpendicular to the magnetic field. We propose that both variabilities occur because of the variability of the upward (field-aligned) current sheet in and around the arc, which is dynamic and non-uniform. The correlation between the two variabilities can therefore be explained by their common source.

Influence of Equatorial Spring Insolation on Abrupt Asian Summer Monsoon Decline at Orbital Scale

JGR–Atmospheres - Fri, 07/05/2024 - 06:26
Abstract

The dominant influence of precession-induced changes in summer insolation on orbital-scale variability of the Asian summer monsoon (ASM) during the Holocene has been widely proposed; however, it remains unclear why the decline of the ASM started several thousand years after the peak summer insolation. Through comparisons of climate simulations and proxy records, our study reveals that the abrupt decline in the ASM coincided with an increase in spring insolation at the equator. The reduced spring insolation resulted in a cooler tropical Indian Ocean, which weakened and shifted northward the westerly jet due to decreased meridional thermal gradient. The South Asian high moved northward in conjunction with the westerly jet, causing anomalous upwards over northern South Asia, the Tibetan Plateau, as well as southwestern and northern China. The associated anomalous cyclone over the Tibetan Plateau enhanced the monsoonal moisture transport, subsequently intensifying the ASM circulation and precipitation. The ASM was enhanced by the decrease in spring insolation and was weakened by the opposite. The abrupt decline of the ASM was associated with an increase in spring insolation superimposed on a decrease in summer insolation. Consequently, orbital-scale ASM variability is dominated by the precession not only via insolation changes in summer but also changes in spring.

Field‐Aligned Current Structures During the Terrestrial Magnetosphere's Transformation Into Alfvén Wings and Recovery

GRL - Fri, 07/05/2024 - 05:59
Abstract

On 24 April 2023, a Coronal Mass Ejection event caused the solar wind to become sub-Alfvénic, leading to the development of an Alfvén Wing configuration in the Earth's magnetosphere. Alfvén Wings have previously been observed as cavities of low flow around moons in Jupiter's and Saturn's magnetospheres, but the observing spacecraft did not have the ability to directly measure the Alfvén Wings' current structures. Through in situ measurements made by the Magnetospheric Multiscale spacecraft, the 24 April event provides us with the first direct measurements of current structures during an Alfvén Wing configuration. These structures are observed to be significantly more anti-field-aligned and electron-driven than the typical diamagnetic magnetopause current, indicating the disruption caused to the magnetosphere current system by the Alfvén Wing formation. The magnetopause current is then observed to recover more of its typical, perpendicular structure during the magnetosphere's recovery from the Alfvén Wing formation.

Co‐Benefits of Mitigating Aerosol Pollution to Future Solar and Wind Energy in China Toward Carbon Neutrality

GRL - Fri, 07/05/2024 - 05:56
Abstract

The climate commitment to achieving carbon neutrality before 2060 in China has been announced recently. In the context of pursuing carbon neutrality, sharing similar sources as greenhouse gases, aerosol particle and precursor emissions are projected to substantially decrease in China, which can potentially have a great impact on climate. Here, we investigate the effects of future aerosol reductions, because of achieving carbon neutrality, on solar and wind energy in China by using an earth system model. We show that significant reductions in aerosol emissions, particularly in eastern China, lead to increases in the surface downwelling shortwave radiation, surface air temperature and wind speed, which can further enhance the potential of solar and wind energy production. The findings underline that the pursuit of carbon neutrality can yield co-benefits of not only mitigating climate change and air pollution but also fortifying the stability of renewable energy sources.

Meltwater Orientations Modify Seismic Anisotropy in Temperate Ice

GRL - Fri, 07/05/2024 - 05:50
Abstract

Seismology is increasingly used to infer the magnitude and direction of glacial ice flow. However, the effects of interstitial meltwater on seismic properties remain poorly constrained. Here, we extend previous studies on seismic anisotropy in temperate ices to consider the role of melt preferred orientation (MPO). We used the ELLE numerical toolbox to simulate microstructural shear deformation of temperate ice with variable MPO strength and orientation, and calculated the effective seismic properties of these numerical ice-melt aggregates. Our models demonstrate that even 3.5% melt volume is sufficient to rotate fast directions by up to 90°, to increase Vp anisotropy by up to +110%, and to modify Vs anisotropy by −9 to +36%. These effects are especially prominent at strain rates ≥3.17 × 10−12 s−1. MPO may thus obscure the geophysical signatures of temperate ice flow in regions of rapid ice discharge, and is therefore pivotal for understanding ice mass loss.

Is El Niño‐Southern Oscillation a Tipping Element in the Climate System?

GRL - Fri, 07/05/2024 - 05:45
Abstract

Observed El Niño-Southern Oscillation (ENSO) varies between decades with high ENSO amplitude and more extreme Eastern Pacific (EP) El Niño events and decades with low ENSO amplitude and mainly weak El Niño events. Based on experiments with the CESM1 model, ENSO may lock-in into an extreme EP El Niño-dominated state in a +3.7 K warmer climate, while in a −4.0 K cooler climate ENSO may lock-in into a weak El Niño-dominated state. The state shift of ENSO with global warming can be explained by the location and amplitude of the strongest warming over the eastern equatorial Pacific, which amplifies the Bjerknes feedback and allows a southward migration of the Intertropical Convergence Zone onto the equator, a prerequisite of extreme EP El Niños. In light of these results, we discuss to what extent the state of ENSO may be a tipping element in the climate system.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer