Feed aggregator

The Capability of Amphibole in Tracing the Physicochemical Processes of Magma Mixing

GRL - Wed, 07/10/2024 - 16:59
Abstract

This study explores the capability of amphibole in tracing the physicochemical process of magma mixing through spatially associated gabbros, mafic microgranular enclaves (MMEs) and granodiorites from central Tibet. These rocks share similar zircon ages as well as zircon Hf-O and plagioclase Sr isotopes. However, the amphiboles within the gabbros and granodiorites have different Sr and B isotope compositions, while amphiboles with both heterogeneous isotopic imprints occur in the MMEs. According to data and modeling, significant mixing of two isotopically distinct magmas is recorded by amphibole but not by zircon and plagioclase. Based on a synthesis of petrography, geochemistry and thermobarometry, we interpret this inconsistency by the crystallization order of minerals and propose that magma mixing occurred after the parent magma was emplaced at ∼10 km and cooled to ∼750°C. Our study highlights that amphibole may be a more sensitive tracer of magma mixing relative to other commonly used methods.

Increases of Offshore Wind Potential in a Warming World

GRL - Wed, 07/10/2024 - 16:56
Abstract

Offshore wind farms, a rapidly expanding sector within wind energy, are playing a significant role in achieving global carbon neutrality, and this trend is to continue. Here, we utilize ERA5 reanalysis to correct offshore wind speed trends predicted by CMIP6 models. This approach led to enhanced projections for changes in offshore Wind Power Density (WPD) under four Shared Socioeconomic Pathways (SSPs) scenarios. Throughout the 21st century, global offshore WPD is projected to follow an upward trend across all SSP scenarios. Notably, Europe stands out with the most substantial increase in offshore WPD among regions with higher current installations, projected to reach up to 26% under 4°C global warming. Our study uncovers a notable increase of global offshore WPD in a warmer climate, which offers valuable insights for the strategic planning of future global wind energy.

Vegetation‐Generated Turbulence Does Not Impact the Erosion of Natural Cohesive Sediment

GRL - Wed, 07/10/2024 - 16:43
Abstract

Previous studies have demonstrated that vegetation-generated turbulence can enhance erosion rate and reduce the velocity threshold for erosion of non-cohesive sediment. This study considered whether vegetation-generated turbulence had a similar influence on natural cohesive sediment. Cores were collected from a black mangrove forest with aboveground biomass and exposed to stepwise increases in velocity. Erosion was recorded through suspended sediment concentration. For the same velocity, cores with pneumatophores had elevated turbulent kinetic energy compared to bare cores without pneumatophores. However, the vegetation-generated turbulence did not increase bed stress or the rate of resuspension, relative to bare cores. It was hypothesized that the short time-scale fluctuations associated with vegetation-generated turbulence were not of sufficient duration to break cohesion between grains, explaining why elevated levels of turbulence associated with the pneumatophores had no impact on the erosion threshold or rate.

Evaluating the Seasonal Responses of Southern Ocean Sea Surface Temperature to Southern Annular Mode in CMIP6 Models

GRL - Wed, 07/10/2024 - 15:39
Abstract

Using observations and CMIP6 historical simulations, the seasonal responses of Southern Ocean (50°S–70°S) sea surface temperature (SST) to Southern Annular Mode (SAM) variations are investigated in this study. The results suggest that the averaged Southern Ocean SST in austral spring and summer show a significant cooling in response to a positive SAM, while the responses in austral autumn and winter are negligible. The cooling effect is resulted from the cold water in higher latitudes and deeper oceans brought by the equatorward Ekman transport and the Ekman pumping associated with the positive SAM. Among CMIP6 models, the magnitude of the simulated cooling response connects to the climatological meridional and vertical ocean temperature gradients, and the magnitude of Ekman motion in response to SAM. In addition, the spring and summer SAM plays a more important role in modulating Southern Ocean SST in autumn and winter than the autumn and winter SAM.

Issue Information

GRL - Wed, 07/10/2024 - 13:14

No abstract is available for this article.

Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation

Nonlinear Processes in Geophysics - Wed, 07/10/2024 - 10:42
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024, 2024
Recently, scientists have been looking into ways to control the weather to lead to a desirable direction for mitigating weather-induced disasters caused by torrential rainfall and typhoons. This study proposes using the model predictive control (MPC), an advanced control method, to control a chaotic system. Through numerical experiments using a low-dimensional chaotic system, we demonstrate that the system can be successfully controlled with shorter forecasts compared to previous studies.

Deep Learning‐Based Prediction of Global Ionospheric TEC During Storm Periods: Mixed CNN‐BiLSTM Method

Space Weather - Wed, 07/10/2024 - 07:00
Abstract

The application of deep learning in high-precision ionospheric parameter prediction has become one of the focus in space weather research. In this study, an improved model called Mixed Convolutional Neural Networks (CNN)—Bi-Long Short Term Memory is proposed for predicting future ionospheric Total Electron Content (TEC). The model is trained using the longest available (25 years) Global Ionospheric Maps-TEC and evaluated the accuracy of ionospheric storm predictions. The results indicate that using historical TEC in the solar-geographical reference frame as input driving data achieves higher prediction accuracy compared to that in the geocentric coordinate system. Additionally, by comparing different input parameters, it is found that incorporating the Kp, ap, and Dst indices as inputs to the model effectively improves its accuracy, especially in long-term forecasting where R2 increased by 3.49% and Root Mean Square Error decreased by 13.48%. Compared with BiLSTM-Deep Neural Networks (DNN) and CNN-BiLSTM, the Mixed CNN-BiLSTM model has the highest prediction accuracy. It suggests that the utilization of CNN modules for processing spatial information, along with the incorporation of DNN modules to incorporate geomagnetic indices for result correction. Moreover, in short-term predictions, the model accurately forecasts the evolution process of ionospheric storms. When extending the predicted length, although there are cases of prediction errors, the model still captures the entire process of ionospheric storms. Furthermore, the predicted results are significantly influenced by longitude, magnetic latitude, and local time.

FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth

Geoscientific Model Development - Wed, 07/10/2024 - 05:03
FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth
Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica
Geosci. Model Dev., 17, 5263–5290, https://doi.org/10.5194/gmd-17-5263-2024, 2024
Ice sheets present a thickness of a few kilometres, leading to a vertical deformation of the crust of up to a kilometre. This process depends on properties of the solid Earth, which can be regionally very different. We propose a model that accounts for this often-ignored heterogeneity and run 100 000 simulation years in minutes. Thus, the evolution of ice sheets is modeled with better accuracy, which is critical for a good mitigation of climate change and, in particular, sea-level rise.

Fluvial flood inundation and socio-economic impact model based on open data

Geoscientific Model Development - Wed, 07/10/2024 - 05:03
Fluvial flood inundation and socio-economic impact model based on open data
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, 2024
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.

Development and Comparison of Empirical Models for All-sky Downward Longwave Radiation Estimation at the Ocean Surface Using Long-term Observations

Atmos. Meas. techniques - Tue, 07/09/2024 - 13:23
Development and Comparison of Empirical Models for All-sky Downward Longwave Radiation Estimation at the Ocean Surface Using Long-term Observations
Jianghai Peng, Bo Jiang, Hui Liang, Shaopeng Li, Jiakun Han, Thomas C. Ingalls, Jie Cheng, Yunjun Yao, Kun Jia, and Xiaotong Zhang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-85,2024
Preprint under review for AMT (discussion: open, 0 comments)
Our study introduces a new model that improves predictions of heat interactions at the ocean's surface, using data from 65 buoys. This model, more accurate than previous ones, incorporates effects of cloud cover and atmospheric water, enhancing our understanding of the ocean’s role in climate regulation. This could significantly aid climate research and environmental monitoring.

Variation in Granular Frictional Resistance Across Nine Orders of Magnitude in Shear Velocity

JGR–Solid Earth - Tue, 07/09/2024 - 11:43
Abstract

Determining the shear-velocity dependence of dry granular friction can provide insight into the controlling variables in a dry granular friction law. Some laboratories believe that the quality of this study is at the forefront of the discipline for the following reasons. Results suggest that granular friction is greatly affected by shear-velocity (v), but shear experiments over the large range of naturally occurring shear-velocities are lacking. Herein we examined the shear velocity dependence of dry friction for three granular materials, quartz sand, glass beads and fluorspar, across nine orders of magnitude of shear velocity (10−8–2 m/s). Within this range, granular friction exhibited four regimes, following a broad approximate “m” shape including two velocity-strengthening and two velocity-weakening regimes. We discuss the possible physical mechanisms of each regime. This shear velocity dependence appeared to be universal for all particle types, shapes, sizes, and for all normal stresses over the tested range. We also found that ultra-high frequency vibration as grain surfaces were scoured by micro-chips were formed by spalling at high shear velocities, creating ∼20 μm diameter impact pits on particle surfaces. This study provides laboratory laws of a friction-velocity (μ-v) model for granular materials.

Aircraft engine dust ingestion at global airports

Natural Hazards and Earth System Sciences - Tue, 07/09/2024 - 09:09
Aircraft engine dust ingestion at global airports
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.

An improved dynamic bidirectional coupled hydrologic–hydrodynamic model for efficient flood inundation prediction

Natural Hazards and Earth System Sciences - Tue, 07/09/2024 - 09:09
An improved dynamic bidirectional coupled hydrologic–hydrodynamic model for efficient flood inundation prediction
Yanxia Shen, Zhenduo Zhu, Qi Zhou, and Chunbo Jiang
Nat. Hazards Earth Syst. Sci., 24, 2315–2330, https://doi.org/10.5194/nhess-24-2315-2024, 2024
We present an improved Multigrid Dynamical Bidirectional Coupled hydrologic–hydrodynamic Model (IM-DBCM) with two major improvements: (1) automated non-uniform mesh generation based on the D-infinity algorithm was implemented to identify flood-prone areas where high-resolution inundation conditions are needed, and (2) ghost cells and bilinear interpolation were implemented to improve numerical accuracy in interpolating variables between the coarse and fine grids. The improved model was reliable.

Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone

Natural Hazards and Earth System Sciences - Tue, 07/09/2024 - 09:09
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024, 2024
The purpose of this study is to estimate the spatial distribution of the tsunami hazard in the South China Sea from the Manila subduction zone. The plate motion data are used to invert the degree of locking on the fault plane. The degree of locking is used to estimate the maximum possible magnitude of earthquakes and describe the slip distribution. A spatial distribution map of the 1000-year return period tsunami wave height in the South China Sea was obtained by tsunami hazard assessment.

Modeling Seismic Hazard and Landslide Potentials in Northwestern Yunnan, China: Exploring Complex Fault Systems with multi-segment rupturing in a Block Rotational Tectonic Zone

Natural Hazards and Earth System Sciences - Tue, 07/09/2024 - 09:09
Modeling Seismic Hazard and Landslide Potentials in Northwestern Yunnan, China: Exploring Complex Fault Systems with multi-segment rupturing in a Block Rotational Tectonic Zone
Jia Cheng, Chong Xu, Xiwei Xu, Shimin Zhang, and Pengyu Zhu
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-96,2024
Preprint under review for NHESS (discussion: open, 3 comments)
The Northwestern Yunnan Region (NWYR), with a complex network of active faults, presents significant seismic hazards such as multi-segment ruptures and landslides. This article introduces a new seismic hazard model, which integrates fault slip parameters to assess the risks associated with multi-segment ruptures. The results reveal the intricate relationship between these ruptures and the regional small block rotation induced by regional low-crustal flow and gravitational collapse.

Multi‐Frequency SuperDARN Interferometer Calibration

Radio Science - Tue, 07/09/2024 - 07:00
Abstract

The ground-based, high-frequency radars of the Super Dual Auroral Radar Network (SuperDARN) observe backscatter from ionospheric field-aligned plasma irregularities and features on the Earth's surface out to ranges of several thousand kilometers via over-the-horizon propagation of transmitted radio waves. Interferometric techniques can be applied to the received signals at the primary and secondary antenna arrays to measure the vertical angle of arrival, or elevation angle, for more accurate geolocation of SuperDARN observations. However, the calibration of SuperDARN interferometer measurements remains challenging for several reasons, including a 2π phase ambiguity when solving for the time delay correction factor needed to account for differences in the electrical path lengths between signals received at the two antenna arrays. We present a new technique using multi-frequency ionospheric and ground backscatter observations for the calibration of SuperDARN interferometer data, and demonstrate its application to both historical and recent data.

Improved Energy Resolution Measurements of Electron Precipitation Observed During an IPDP‐Type EMIC Event

JGR:Space physics - Tue, 07/09/2024 - 07:00
Abstract

High energy resolution DEMETER satellite observations from the Instrument for the Detection of Particle (IDP) are analyzed during an electromagnetic ion cyclotron (EMIC)-induced electron precipitation event. Analysis of an Interval Pulsation with Diminishing Periods (IPDP)-type EMIC wave event, using combined satellite observations to correct for incident proton contamination, detected an energy precipitation spectrum ranging from ∼150 keV to ∼1.5 MeV. While inconsistent with many theoretical predictions of >1 MeV EMIC-induced electron precipitation, the finding is consistent with an increasing number of experimentally observed events detected using lower resolution integral channel measurements on the POES, FIREBIRD, and ELFIN satellites. Revised and improved DEMETER differential energy fluxes, after correction for incident proton contamination shows that they agree to within 40% in peak flux magnitude, and 85 keV (within 40%) for the energy at which the peak occurred as calculated from POES integral channel electron precipitation measurements. This work shows that a subset of EMIC waves found close to the plasmapause, that is, IPDP-type rising tone events, can produce electron precipitation with peak energies substantially below 1 MeV. The rising tone features of IPDP EMIC waves, along with the association with the high cold plasma density regime, and the rapidly varying electron density gradients of the plasmapause may be an important factor in the generation of such low energy precipitation, co-incident with a high energy tail. Our work highlights the importance of undertaking proton contamination correction when using the high-resolution DEMETER particle measurements to investigate EMIC-driven electron precipitation.

First Observation of Harmonics of Magnetosonic Waves in Martian Magnetosheath Region

JGR:Space physics - Tue, 07/09/2024 - 07:00
Abstract

The present study provides an evidence for the generation of harmonics of magnetosonic waves in the Martian magnetosheath region. The wave signatures are manifested in the magnetic field measurements recorded by the fluxgate magnetometer instrument onboard the Mars Atmosphere and Volatile Evolution missioN (MAVEN) spacecraft in the dawn sector around 5–10 LT at an altitude of 4,000–6,000 kms. The wave that is observed continuously from 19.1 to 20.7 UT below the proton cyclotron frequency (f ci  ≈ 46 mHz) is identified as fundamental mode of the magnetosonic wave. Whereas harmonics of the magnetosonic wave are observed during 19.7–20.3 UT at frequencies that are multiple of f ci . The ambient solar wind proton density and plasma flow velocity are found to vary with a fundamental mode frequency of 46 mHz. It is noticed that the fundamental mode is mainly associated with the left-hand (LH), and higher frequency harmonics are associated with the right-hand (RH) circular polarizations. A clear difference in the polarization and ellipticity is noticed during the time of occurrence of harmonics. The magnetosonic wave harmonics are found to propagate in the quasi-perpendicular directions to the ambient magnetic field. The results of linear theory and Particle-In-Cell simulation performed here are in agreement with the observations. The present study provides a conclusive evidence for the occurrence of harmonics of magnetosonic wave in the close vicinity of the magnetosheath region of the unmagnetized planet Mars.

Intermediate Descending Layers Emerged Simultaneously in Five Different Locations During the Solar Eclipse on 21 June 2020

JGR:Space physics - Tue, 07/09/2024 - 07:00
Abstract

Solar eclipse traveled across South China in the afternoon on 21 June 2020. Five ionosondes located from mid-to low-latitudes and on both north and south of the eclipse path were applied to investigate the ionospheric responses. Both the zonal and meridional ranges of the observation region have exceeded 1,000 km. All the five ionosondes had observed the Intermediate Descending Layers (IDLs) simultaneously just after the eclipse maximum and this is a very small probability event. During the solar eclipse, the multi-hop echoes above the Es, the rising Es to 150 km altitude, the plasma flux from above F2-layer were also observed and analyzed. The descending trend of the IDLs and the peak height of F2-layer (h m F2) shows great consistency, indicating the close relationship between the eclipse induced plasma flux and the IDLs. The traces of gravity waves were also found in the IDLs and F-layer. The plasma flux may carry the ions to valley region and the eclipse produced gravity waves were responsible for the formation of the IDLs.

RoGeR v3.0.5 – a process-based hydrological toolbox model in Python

Geoscientific Model Development - Tue, 07/09/2024 - 05:03
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024, 2024
The new process-based hydrological toolbox model, RoGeR (https://roger.readthedocs.io/), can be used to estimate the components of the hydrological cycle and the related travel times of pollutants through parts of the hydrological cycle. These estimations may contribute to effective water resources management. This paper presents the toolbox concept and provides a simple example of providing estimations to water resources management.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer