EOS

Syndicate content Eos
Science News by AGU
Updated: 18 hours 54 min ago

Three Magmatic Pulses Helped Rifting Transform into Seafloor Spreading

Wed, 07/30/2025 - 19:04
Editors’ Highlights are summaries of recent papers by AGU’s journal editors. Source: Geochemistry, Geophysics, Geosystems

More than a century ago, Alfred Wegener proposed that the Atlantic Ocean formed after North America drifted away from Africa and Eurasia. Much later, the theory of plate tectonics explained this movement as resulting from the formation of new oceanic crust in the space between the continents. But how did the the initial rift between the landmasses form, and how did it transition into a mid-ocean spreading ridge? Answers to these questions have remained elusive, partly because the time history of the rifting process has been difficult to decipher.

Foster-Baril et al. [2025] shed new light on the “rift to drift” transition by dating igneous rocks across a broad swath of the North American margin. They find that continental breakup and the subsequent transition to seafloor spreading was accomplished by three major pulses of magmatism. The first pulse was the largest, and involved extensive melting of mantle from below as the rift opened across a wide area. The second and third pulses, which were smaller, helped to localize the extensional deformation into a confined region. This localization facilitated the transition to symmetric seafloor spreading.

This sequence suggests that continental breakup happens across a much broader area, and over a longer time period, than was previously thought. It is still unclear if other continental breakup events also featured a series of magmatic pulses, or if the North American margin was unique in this way. Can this sequence also help us to understand “failed rifts” that never transition into seafloor spreading events? More studies that examine magmatism across broad regions of a rifting zone can help to answer such questions.

Citation: Foster-Baril, Z. S., Hinshaw, E. R., Stockli, D. F., Bailey, C. M., & Setera, J. (2025). Duration and geochemical evolution of Triassic and Jurassic magmatism along the Eastern North American Margin. Geochemistry, Geophysics, Geosystems, 26, e2024GC011900.  https://doi.org/10.1029/2024GC011900

—Clinton P. Conrad, Associate Editor, G-Cubed

Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

When Rain Falls in Africa, Grassland Carbon Uptake Rises

Wed, 07/30/2025 - 14:05
Source: Global Biogeochemical Cycles

Africa is a source of uncertainty in carbon cycle calculations. By some estimates, the continent’s landscapes emit 2.1 billion tons more carbon dioxide than they take up each year—about equal to 1.5 times the annual emissions from coal-fired power plants. But other estimates are almost the complete opposite, suggesting that the continent’s copious plant matter takes up 2.0 billion more tons of carbon dioxide per year than it releases.

This uncertainty exists in part because the amount of carbon Africa takes up and emits varies greatly from year to year and partly because there is a dearth of available surface observations across the continent. Yun et al. investigated the reason for these fluctuations by applying a suite of atmospheric transport models to data from the Orbiting Carbon Observatory-2 (OCO-2), a satellite-borne instrument that tracks carbon dioxide emissions across Earth’s surface. By filling a critical observational gap over Africa, the OCO-2 satellite has allowed researchers to examine the continent’s carbon cycle in unprecedented detail.

Scientists previously suspected that temperature was the prime factor influencing plant growth and therefore carbon dioxide emissions. Instead, these researchers found that in Africa, moisture levels have a much bigger impact.

Different types of landscapes react to moisture quite differently, however. In shrublands and grasslands, plants take full advantage of water when it becomes available by increasing their mass with little energy expenditure. That reaction means that in wet years, shrublands and grasslands take up a lot of carbon and expel very little, substantially shifting the continent’s carbon flux. In contrast, forests and savannas emit and take up about the same amount of carbon in wet conditions; their overall impact on the continent’s carbon flux is therefore smaller.

These findings suggest an explanation for the long-standing question of why Africa was such a weak carbon sink during the El Niño event of 2015–2016. The continent was unusually dry during that time, leading to stalled plant growth and carbon uptake.

Rainfall is expected to change in Africa in the coming decades. Overall, moisture availability is expected to increase in the north and decrease in the south, but precipitation will likely be patchy, leading to discrete bursts of plant growth. The researchers emphasize that the long-term operation of OCO-2 is essential for monitoring how African ecosystems respond to these shifting rainfall patterns. Taking moisture fluctuations into account could enable more accurate predictions of how the carbon cycle will respond to climate change. (Global Biogeochemical Cycles, https://doi.org/10.1029/2025GB008597, 2025)

—Saima May Sidik (@saimamay.bsky.social), Science Writer

Citation: Sidik, S. M. (2025), When rain falls in Africa, grassland carbon uptake rises, Eos, 106, https://doi.org/10.1029/2025EO250277. Published on 30 July 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Magnitude-8.8 Earthquake Strikes Western Pacific

Wed, 07/30/2025 - 13:42
body {background-color: #D2D1D5;} Research & Developments is a blog for brief updates that provide context for the flurry of news regarding law and policy changes that impact science and scientists today.

One of the strongest earthquakes ever recorded struck off the eastern coast of Russia’s Kamchatka Peninsula Wednesday morning local time. Initially pegged at a magnitude-8.0, the quake was eventually upgraded to a magnitude-8.8. Adjusted magnitude estimates are not unusual for large earthquakes as more data become available.

If the estimate is not adjusted farther, the quake will be tied as the sixth largest earthquake ever recorded by modern instrumentation. The next largest instrumented event, a magnitude-9.0 quake, struck in 1952 roughly 45 kilometers to the northeast of the latest epicenter. 

U.S. Geological Survey “Did You Feel It?” reports captured the shaking that people on the Kamchatka Peninsula felt during the magnitude-8.8 earthquake. Credit: USGS, public domain

According to the U.S. Geological Survey (USGS), the recent earthquake likely struck along the Kuril-Kamchatka arc, which separates the Pacific tectonic plate and the Okhotsk microplate. Along the boundary, the Pacific plate is being subducted roughly to the west beneath the microplate. A preliminary USGS analysis of seismic data suggests the recent earthquake accommodated thrust motion, which is expected during slip along a subduction boundary.

On 20 July 2025, a magnitude-7.4 earthquake struck roughly 60 kilometers to the northeast of the recent epicenter. That quake occurred as a result of slip along a thrust fault of similar orientation. It’s proximity in location and time to the recent earthquake suggests the magnitude-7.4 quake was a foreshock to the magnitude-8.8 quake.  

Aftershocks are ongoing and will likely continue for weeks. More than 90 earthquakes of at least magnitude-4.4 have struck as of 1:00 p.m. UTC Wednesday, including a magnitude-6.9 shock followed a few minutes later by a magnitude-6.3 shock.

The magnitude-8.8 earthquake caused strong to extreme shaking in southern Kamchatka, according to USGS “Did You Feel It?” reports from the region.

 
Related

The earthquake generated tsunami waves that spread across the Pacific. Wave heights of more than 3 meters inundated Severo-Kurilsk in the Kuril Islands south of Kamchatka, according to a Russian news agency.

The Japan Meteorological Agency issued tsunami warnings for much of the country’s Pacific coast. Waves up to 1.3 meters struck Kuji Port in northern Honshu. The U.S Tsunami Warning Center issued warnings for coastal Alaska, Hawaii, Washington, Oregon, and Northern California. Waves reached as high as 1.2 meters in Northern California. In Hawaii, waves reached 1.74 meters in Kahului on Maui and 1.5 meters in Hilo on the Big Island. 

Some injuries and no deaths have been reported.

—Jennifer Schmidt, Managing Editor

These updates are made possible through information from the scientific community. Do you have a story about how changes in law or policy are affecting scientists or research? Send us a tip at eos@agu.org. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Scientists Ask NSF to Keep Only Antarctic Icebreaker Afloat

Tue, 07/29/2025 - 13:46
body {background-color: #D2D1D5;} Research & Developments is a blog for brief updates that provide context for the flurry of news regarding law and policy changes that impact science and scientists today.

On 28 July, more than 170 researchers sent a letter to National Science Foundation leaders and Congress, urging them to reconsider the decision to terminate the lease of the Nathaniel B. Palmer, the United States’ only Antarctic research vessel-icebreaker (RVIB) and a key part of science operations around the White Continent.

NSF revealed plans to end its lease with Offshore Service Vessels, the icebreaker’s owner, in its May budget request for 2026. An NSF spokesperson confirmed the plan to Science on 28 July, saying the lease would be terminated in October.

“This decision forecasts the decline of an exceptional history of U.S. scientific contributions,” the letter’s authors wrote.  

 
Related

The Palmer has operated since 1992, spending much of its time in the Southern Ocean. There, scientists have collected data to gain understanding of Earth’s past, ocean processes, and the changing sea ice in Antarctica, including Thwaites Glacier—the so-called “doomsday glacier.” 

At a planning meeting earlier this summer, NSF officials said the R/V Sikuliaq would take over some of the work planned for the Palmer. But the Sikuliaq may not be up for the task: The ship is “wholly unsuited to most of what we do in Antarctica,” Julia Wellner, a marine geologist at the University of Houston, told Science. 

The research community has long been sounding the alarm about the dwindling U.S. Academic Research Fleet. Many vessels in the fleet have passed or are nearing the end of their original design lives, and although mid-life refits can extend their use, the yearslong process of designing, building, and outfitting a new vessel means the time to invest in replacements is now, according to ocean scientists.

“If federal budgets don’t keep pace to enable science, U.S. expertise in ocean science is largely going to continue to dwindle,” Paula Bontempi, an oceanographer at the University of Rhode Island, told Eos in January. “An investment in our ocean enterprise as a country is an investment in our shared future.”

Last year, NSF retired the JOIDES Resolution, a beloved ocean drilling vessel that had been conducting research for 4 decades, without plans to build or acquire a replacement. It also ended support for its other Antarctic research and supply vessel, the R/V Laurence M. Gould. In addition to ending operations of the Palmer, this year’s budget request also proposed to cut funding for a potential replacement vehicle for the ship.

“We urge reconsideration of the decision to terminate the lease of the RVIB Nathaniel B. Palmer, and the continued forward-looking development of the next generation of Antarctic research vessels that will continue US leadership, scientifically and geopolitically, in the high southern latitudes,” the letter’s authors wrote.

—Grace van Deelen (@gvd.bsky.social), Staff Writer

These updates are made possible through information from the scientific community. Do you have a story about how changes in law or policy are affecting scientists or research? Send us a tip at eos@agu.org. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Southern Ocean Salinity May Be Triggering Sea Ice Loss

Tue, 07/29/2025 - 12:42

The Southern Ocean exists in a state of precarious balance. The sea is layered, with cold surface water sitting atop relatively warm water. It’s an inherently unstable situation—all else being equal, the warm water should rise to the top. But it’s saltier and therefore denser, so it lurks below. The cold upper layer, meanwhile, is freshened by snowfall and sea ice, which forms near the coast, then drifts northward into the open ocean before melting.

For the past 10 years, sea ice cover has been in decline as ocean temperatures have warmed. The rapid melting has delivered even more freshwater to the surface, which should strengthen the cold-water-layer’s insulative ability, allowing the sea ice to eventually expand again.

But that feedback loop appears to have been disrupted. New satellite data have revealed that the ocean around Antarctica, against all expectations, is getting saltier.

The study was published in Proceedings of the National Academy of Sciences of the United States of America.

Measuring Where It’s Hard to Measure

Sea ice, rough seas, and 24-hour darkness make it nearly impossible to monitor Southern Ocean salinity from a ship in the winter. Only in recent years has it been possible to measure salinity in the Southern Ocean from space. Satellites can observe the ocean surface’s brightness temperature—a measure of radiation given off at the sea surface. The fresher the water, the higher the brightness temperature.

The technique works well in warmer waters, but in cold waters, brightness temperature doesn’t shift as much as salinity changes. Because these changes are generally quite subtle to begin with, satellites haven’t been able to accurately detect them in polar regions. In these areas, sea ice has also clouded the signal.

Recent advances in satellite technology, however, have greatly improved the sensitivity of brightness readings, and new algorithms allow researchers to clean up noise from sea ice.

Oceanographer Alessandro Silvano of the University of Southampton and his colleagues analyzed the past 12 years of salinity records from the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) satellite. Team member Alex Haumann, a climate scientist with Ludwig-Maximilians-Universität München, in Germany, said having these broad data, which cover the entire Southern Ocean at 25-square-kilometer resolution, is a game changer. “Due to the big coverage and the time series you can get, it’s super valuable. It’s really a new tool to monitor this system.”

“With warming, we expect more freshwater to be flowing into the ocean. So having this saltier water appearing at the surface is quite shocking.”

When the team saw that salinity had increased over that period, however, they couldn’t help but question the technology. To ground truth what they were seeing, they turned to Argo floats—automated buoys that sample water up to 2,000 meters deep. A network of the floats dots the world’s seas, including the Southern Ocean.

To Silvano’s surprise and shock, the floats corroborated the satellite data. “They show the same signal,” he said. “We thought, okay, this is a real thing. It’s not an error.”

Matching the salinity data to trends in sea ice, the team noticed a disturbing pattern. “There is a very high correlation between the surface salinity and the sea ice cover,” Haumann said. “Whenever there’s high salinity, you have low sea ice. Whenever it is low salinity, there is more sea ice.”

“With warming, we expect more freshwater to be flowing into the ocean. So having this saltier water appearing at the surface is quite shocking,” said Inga Smith, a sea ice physicist at the University of Otago in New Zealand who was not involved in the research.

A Shifting Regime

The most plausible explanation for the boost in salinity, Silvano said, is that the delicate layers of Antarctic water have been upset, and the warmer, saltier water below is now bursting through to the surface, making the surface too warm for sea ice to form.

Though he stressed it’s too early to pinpoint a cause for the upwelling, Silvano postulated that it may be driven by stronger westerly winds around Antarctica—a result of the warming climate. He said he fears that Antarctica’s natural damage control mechanism, in which ice melt releases freshwater, which in turn traps the warm deep water and eventually allows more sea ice to form, is now irreversibly broken.

The weakening of the ocean’s stratification instead threatens to set up a dangerous new feedback, whereby powerful convection currents bring up even more warm, salty water from depth, leading to runaway ice loss.

“We have to find ways to monitor the system, because it’s changing very rapidly.”

“We think this could be a regime shift—a shift in the ocean and ice system, where you have permanently less ice,” Silvano said.

Wolfgang Rack, a glaciologist with the University of Canterbury in New Zealand who was not involved in the research, said the satellite record is not long enough to show whether the rise in salinity is an anomaly, or a new state of normal, but “it is quite unlikely that it is a simple anomaly, because the signal is so significant.”

Zhaomin Wang, an oceanographer with Hohai University in Nanjing, China, who was not involved in the research, said the study was a “very firm result,” but cautioned that it’s still too early to conclusively pin the sea ice retreat on upwelling. “It’s quite difficult to disentangle the cause and effect between Antarctic sea ice change and the surface salinity change,” he said, “because it’s a coupled system, making it difficult to determine which process initiates the changes.”

For Haumann, the findings show how crucial new technology is for tracking changes in the Southern Ocean. “We have to find ways to monitor the system, because it’s changing very rapidly,” he said. “This is one of the most distant regions on Earth, but one of the most critical for society. Most of the excess heat we have in the climate system goes into this region, and this has helped us keep the planet at a relatively moderate warming rate.”

“Now we don’t really know what will happen to that,” he said.

—Bill Morris, Science Writer

Citation: Morris, B. (2025), Southern Ocean salinity may be triggering sea ice loss, Eos, 106, https://doi.org/10.1029/2025EO250276. Published on 29 July 2025. Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Verdaderas soluciones climáticas están debajo de nosotros

Tue, 07/29/2025 - 12:39

This is an authorized translation of an Eos article. Esta es una traducción al español autorizada de un artículo de Eos.

A medida que el mundo supera los 1.5 °C de calentamiento antropogénico y parece cada vez más probable que alcance los 2.6 °C y 3.1 °C hacia finales de siglo, sigue existiendo una gran controversia, incluso entre geocientíficos, sobre cómo frenar, detener o revertir el acelerado cambio climático que estamos provocando. Como han documentado numerosos estudios, ese calentamiento provocará la inundación de muchas ciudades costeras, daños con valor de billones de dólares derivados de fenómenos meteorológicos extremos, las extinciones generalizadas de especies y olas de calor cada vez más intensas. También representará una amenaza profunda para los sectores financieros y las economías a todas las escalas.

“La escala de mitigación necesaria para mantener el calentamiento por debajo de los 2 °C–3 °C va más allá de la reducción de las emisiones anuales”.

Una cosa es clara: para mitigar estas consecuencias, la primera prioridad de la humanidad debe ser reducir drásticamente sus emisiones anuales de alrededor de 40 gigatoneladas (mil millones de toneladas métricas) de dióxido de carbono (CO₂), el gas de efecto invernadero que más contribuye al calentamiento global. Sin esta reducción, cualquier otra medida en el mejor de los casos tendrá una eficacia limitada.

Desgraciadamente, a estas alturas, la escala de mitigación necesaria para mantener el calentamiento por debajo de los 2 °C–3 °C va más allá de la reducción de las emisiones anuales. También debemos eliminar y almacenar el carbono acumulado en la atmósfera.

Reducir las emisiones anuales no es suficiente

La necesidad de reducir las emisiones ha sido expresada con precisión, pasión y contundencia durante décadas. Sin embargo, las emisiones globales continúan batiendo nuevos récords, aumentando en un 1% en cada uno de los últimos tres años. Mientras tanto, aunque el crecimiento de las energías limpias y renovables (CRE, por sus siglas en inglés) ha batido recientemente sus propios récords, el consumo global de combustibles fósiles continúa en ascenso, y el petróleo, el gas y el carbón siguen representando más del 81% del consumo total de energía (solo 4% menos que hace 20 años).

Incluso bajo condiciones políticas favorables, el consumo de CRE, que como porcentaje del consumo mundial de energía primaria crece a un ritmo de aproximadamente 1% anual, está lejos de alcanzar el crecimiento del consumo energético global, que ronda el 2% por año. Incluso si el crecimiento de las CRE lograra igualar ese ritmo, podrían pasar décadas hasta alcanzar algo parecido a una descarbonización energética global, durante las cuales emitiríamos varias veces más CO₂ del que ya hemos liberado.

En las últimas décadas, centrarse en las emisiones anuales no sólo no ha servido para reducirlas, sino que tampoco son nuestras emisiones actuales (y las futuras) las que están causando el calentamiento de 1.55 °C que estamos presenciando. Es la cantidad de CO₂ que ya hemos emitido. Nuestras emisiones acumuladas de 1.8 billones de toneladas (1,800 gigatoneladas) de CO₂ procedentes de la energía y la industria — pesan más que toda la biomasa viva del planeta — extraídas de reservorios geológicos y vertidas a la atmósfera, permanecerá allí (y en el océano) durante miles de años. Incluso en ese feliz día en que finalmente empecemos a reducir nuestras emisiones, estaremos más lejos que nunca de resolver el problema. De hecho, aún seguiremos agravándolo.

Una gran oportunidad

Científicos y profesionales de múltiples disciplinas y sectores pueden desempeñar un papel clave en la mitigación del cambio climático. La investigación en geociencias es fundamental para comprender los reservorios de carbono y los flujos entre ellos, así como los efectos pasados, presentes y posibles en el futuro sobre el clima. Sin embargo, a estas alturas, parece evidente que es poco probable que más ciencia climática, e incluso mejor comunicación de la misma, inspiren la acción colectiva o política necesaria para activar una mitigación significativa. Entonces, ¿qué más pueden aportar los geocientíficos?

“La remoción de dióxido de carbono (CDR, por sus siglas en inglés) implica riesgos mucho menores que el multi-centenario experimento de geoingeniería de utilizar la atmósfera como desagüeo desagüe”.

Algunos ven un papel en apoyar la extracción de recursos naturales para satisfacer la asombrosa demanda proyectada de metales como el cobre y las tierras raras, y en promover el tipo sostenibilidad impulsada por la tecnología que promueve la industria minera. Los geocientíficos también contribuyen a informar sobre los enfoques de adaptación y resiliencia, aunque ninguna de estas constituye una forma de mitigación y, a largo plazo, resultan mucho más costosas. Se calcula que el impacto económico del calentamiento es de alrededor 12% del PIB (producto interno bruto) mundial por cada 1 °C de aumento de temperatura, y se prevé que nuestra trayectoria actual reduzca el PIB mundial hasta un 40% para el año 2100, con pérdidas aún mayores en ciertas regiones.

La mayor oportunidad — y quizá la mayor responsabilidad — para que los geocientíficos contribuyan a la mitigación está en facilitar la eliminación duradera de dióxido de carbono (CDR, por sus siglas en inglés). A veces surgen preocupaciones sobre la CDR como una forma de intervención climática o geoingeniería; pero es mucho menos arriesgada que el multi-centenario experimento de geoingeniería de utilizar la atmósfera como desagüe. De hecho, eliminar gigatoneladas de CO₂ cada año es esencial para alcanzar las estrategias de emisiones netas cero y evitar cantidades desastrosas de calentamiento, tal como lo han señalado de forma inequívoca el Panel Intergubernamental sobre Cambio Climático (IPCC), la Comisión de Transiciones Energéticas y la Sociedad Americana de Física.

Claves para el retiro de carbono

Generalmente se consideran tres principios fundamentales para la CDR. En primer lugar, se debe extraer el CO₂ que ya está presente en la atmósfera. Este principio se distingue de la captura y almacenamiento de carbono en fuentes puntuales (CCS, por sus siglas en inglés), el cual solo reduce las nuevas emisiones de CO₂ provenientes de fuentes fósiles industriales y energéticas a medida que compite con la energías limpias.

La instalación de captura directa de aire de Mammoth, en Islandia, operada por Climeworks, empezó a extraer dióxido de carbono del aire en 2024. Crédito: ©Climeworks

Existen múltiples enfoques para la eliminación duradera de dióxido de carbono. La captura directa del aire (DAC, por sus siglas en inglés), por ejemplo, es un método que está creciendo rápidamente el cual extrae CO₂ directamente de la atmósfera. Los métodos de eliminación y almacenamiento de carbono a partir de biomasa (BiCRS, por sus siglas en inglés) capturan una fracción de las 480 gigatoneladas de CO₂ que las plantas absorben naturalmente cada año, impidiendo que ese carbono regrese a la atmósfera al convertir la biomasa en formas que pueden aislarse y almacenarse.

Otros enfoques de CDR se centran en la gestión de ecosistemas para estimular una mayor eliminación de CO₂ de la que ocurriría de forma natural, el segundo de los tres principios de la CDR. Algunos ejemplos son las diversas estrategias para mejorar la meteorización de rocas en tierras agrícolas o bosques, y para métodos marinos, como el uso de nutrientes para fomentar el crecimiento de biomasa o el aumento de la alcalinidad del agua de mar para que extraiga más CO₂ del aire.

“Independientemente del método utilizado para eliminar CO₂, este debe almacenarse de forma duradera, con una probabilidad mínima de regresar a la atmósfera durante un largo periodo”.

El tercer principio, y el más importante, es el hecho de que, independientemente del método utilizado para eliminar CO₂, este debe almacenarse de forma duradera, con una probabilidad mínima de regresar a la atmósfera durante un largo periodo de tiempo. Usar el carbono capturado para crear productos comercializables como fertilizantes o compuestos químicos puede parecer económicamente inteligente, pero no es un enfoque duradero. Toda la demanda industrial global de CO₂ representa menos del 1% de nuestras emisiones anuales, y gran parte de ese carbono vuelve a la atmósfera o se utiliza en la recuperación mejorada de petróleo (EOR, por sus siglas en inglés) para extraer más petróleo.

Los llamados enfoques de CDR basados en la naturaleza o uso del suelo, como la reforestación, las prácticas agrícolas y la gestión de suelos, son alternativas intuitivamente atractivas que pueden eliminar y almacenar CO₂ y, si se hacen bien, mejorar la salud de los ecosistemas. Pero estos métodos tampoco son muy duraderos. Las plantas terrestres almacenan una masa de carbono (~1,650 gigatoneladas en toda la vegetación terrestre) casi equivalente a nuestras emisiones acumuladas, y los suelos contienen cuatro veces más. Sin embargo, la mayor parte del carbono de las plantas y el suelo regresa a la atmósfera a través de la descomposición natural o de perturbaciones en escalas de tiempo de años a décadas.

Además, las alteraciones antropogénicas de los bosques y los suelos provocadas por el calentamiento, que son cada vez más intensas y frecuentes, podrían debilitar aún más la durabilidad de la CDR basada en la naturaleza y la tierra. Solo los incendios forestales de Canadá en 2023 liberaron casi 3 gigatoneladas de CO₂, casi cuatro veces más que las emisiones anuales de toda la aviación global. (Estas perturbaciones también amenazan con desestabilizar los antiguos reservorios de carbono en turberas y permafrost, que almacenan en conjunto un stock de carbono equivalente a cinco veces nuestras emisiones acumuladas, otra razón más para acelerar el desarrollo de CDR.) Por lo tanto, aunque la CDR basada en la naturaleza y la tierra aporta beneficios colaterales y es barata y fácil de desplegar, en el contexto de contabilizar emisiones netas cero, solo tiene sentido como compensación de emisiones biogénicas análogas (por ejemplo, uso del suelo o la silvicultura), no para el 82% procedente en su mayor parte de la quema de combustibles fósiles.

Aparte de los tres principios fundamentales de la CDR, el potencial de aplicar enfoques a una escala lo suficientemente grande como para marcar una diferencia significativa es una consideración clave. La escalabilidad de la DAC a gran escala, por ejemplo, se enfrenta a problemas de consumo energético y costos. Asimismo, para reducir la carga acumulada de emisiones con métodos basados en la naturaleza y en la tierra, como la reforestación, requeriría extensiones de tierra descomunales que ya tienen otros muchos usos. Mientras tanto, el océano, que ya contiene cerca de 140,000 gigatoneladas de CO₂, ofrece un enorme potencial debido a su enorme tamaño y a su mayor tiempo de residencia en comparación con otros reservorios cercanos a la superficie, a pesar de las interrogantes sobre cómo el calentamiento futuro afectará esa durabilidad.

El sustancial subsuelo

“Cada vez está más claro que, tanto por su capacidad como por su durabilidad, es difícil superar a los yacimientos geológicos subterráneos”.

Los enfoques de eliminación duradera de dióxido de carbono son diversos y están evolucionando, pero cada vez está más claro que, tanto por su capacidad como por su durabilidad, es difícil superar a los yacimientos geológicos subterráneos. La cantidad de carbono presente en la corteza terrestre es millones de veces mayor que la contenida en todos los reservorios cercanos a la superficie combinados, y permanece allí abajo por varios órdenes de magnitud más tiempo. Las estimaciones sugieren que existe suficiente capacidad de almacenamiento subterráneo para al menos decenas de miles de gigatoneladas de CO₂ recapturado, y análisis recientes de factibilidad han demostrado que alcanzar tasas de almacenamiento de al menos 5 a 6 gigatoneladas de CO₂ por año para 2050 es realista y consistente con las trayectorias tecnológicas actuales.

Lograr una CDR a escala de gigatoneladas será un gran desafío — que requeriría construir apoyo y un mayor desarrollo de los métodos necesarios. Algunos enfoques muestran el mayor potencial.

El CO₂ capturado puede comprimirse e inyectarse como fluido supercrítico (sCO₂) en acuíferos salinos o en yacimientos de petróleo y gas agotados situados a gran profundidad bajo aguas subterráneas dulces y recubiertos por rocas impermeables. Este enfoque es probablemente la principal vía de almacenamiento para el CO₂ capturado mediante tecnologías de captura directa del aire (DAC), así como por la captura y almacenamiento de carbono (CCS) proveniente de las emisiones, y es algo que ya sabemos hacer gracias a décadas de práctica (aunque principalmente para la recuperación mejorada de petróleo). Bajo las condiciones adecuadas, diversos mecanismos de captura minimizan las probabilidades de que escape el CO₂ almacenado de esta manera.

En yacimientos como éste, la empresa islandesa Carbfix inyecta dióxido de carbono disuelto en agua en depósitos geológicos subterráneos, donde reacciona con la roca para formar minerales carbonatados. Crédito: Siljaye/Wikimedia Commons, CC BY-SA 4.0

Otro enfoque prometedor es la mineralización directa, que consiste en inyectar CO₂, ya sea como fluido supercrítico o disuelto en agua, en rocas máficas y ultramáficas reactivas para formar minerales carbonatados. El uso de este método está aumentando a escalas de millones de toneladas por año en algunos lugares.

Otros métodos de eliminación y almacenamiento de carbono a partir de biomasa, BiCRS, relativamente nuevos pero prometedores que aprovechan la capacidad de captura de carbono de las plantas son la inyección subterránea (a menudo en yacimientos agotados de petróleo y gas) de carbono derivado de biomasa en forma de bioaceite, residuos agrícolas o forestales pirolizados, u otros desechos orgánicos (por ejemplo, municipales o de origen ganadero).

Desafíos para los geocientíficos

Dada la trayectoria aún ascendente de nuestras emisiones y la necesidad de soluciones escalables de almacenamiento de carbono, es difícil imaginar que la remoción de CO₂ mediante almacenamiento subterráneo duradero, CDR, no crecerá en las próximas décadas, especialmente si las políticas e incentivos relacionados con el carbono pasan de favorecer la reducción y la evitación de emisiones a la eliminación. Con el interés de la industria de los combustibles fósiles en apuntalar sus activos de producción energética, es posible que también prolifere el uso del almacenamiento de carbono asociado a emisiones (CCS), una tecnología afín a la CDR. En cualquier caso, es probable que el subsuelo sea cada vez más objeto de atención y acción.

A medida que crece este interés, debemos reconocer que el subsuelo es un lugar cada vez más concurrido, donde interactúan recursos hídricos, energéticos y minerales, sin mencionar que alberga hasta el 90 % de toda la vida microbiana y entre el 10 % y el 20 % de toda la biomasa del planeta. Aquí es donde entran en juego las geociencias.

“Ha llegado el momento de que los geocientíficos asuman un papel central en el desarrollo de soluciones de mitigación”.

Tras un siglo en el que la industria de los combustibles fósiles ha definido directa e indirectamente gran parte de la investigación y la formación de la disciplina, ha llegado el momento de que los geocientíficos asuman un papel central en el desarrollo de soluciones de mitigación, específicamente en el almacenamiento duradero de carbono y la gestión responsable del subsuelo. No faltarán desafíos.

Las actividades de minería, geotermia, y producción y disposición de petróleo y gas ya han incrementado los flujos de fluidos subterráneos muy por encima de los niveles previos al Antropoceno, y las proyecciones de estos flujos para 2050 son muchas veces superiores. Tan solo en Estados Unidos, además de más de 4 millones de pozos de producción de petróleo y gas, casi un millón de pozos de inyección subterránea eliminan una enorme variedad de materiales y residuos peligrosos y no peligrosos.

Escalar el almacenamiento subterráneo de carbono a niveles de gigatoneladas por año significaría inyectar grandes cantidades de CO₂, así como de diversas soluciones de carbono, en una amplia gama de reservorios geológicos y aguas asociadas. Esto generará no solo desafíos de ingeniería, sino también retos de esclarecimiento de la eficacia y los peligros de las inyecciones en condiciones muy diversas. Aunque sabemos relativamente bien cómo se comportan el CO₂ supercrítico (sCO₂) y del CO₂ disuelto en ciertos tipos de entornos subterráneos, no sabemos casi nada sobre el comportamiento de los nuevos fluidos de almacenamiento de carbono, como el bioaceite y los residuos biológicos en suspensión o torrefactos.

Los hidrogeoquímicos Ji-Hyun Kim y Rebecca Tyne toman muestras de aguas subterráneas en la cuenca de Paradox, Utah, para comprender las conexiones entre las rocas del subsuelo, los fluidos y las comunidades microbianas y cómo pueden verse afectadas por las actividades antropogénicas, incluido el almacenamiento de carbono. Fotografía: Jennifer McIntosh

El papel de las geociencias en la gestión responsable del subsuelo también implicará aportar nuevas perspectivas sobre cuencas sedimentarias y provincias ígneas, para abordar cuestiones como la permeabilidad y la composición de las rocas que son importantes para el almacenamiento duradero, así como para evaluar los factores de riesgo críticos. Entre los factores de riesgo incluyen la migración de fluidos y su interacción con fallas geológicas y otras barreras de permeabilidad, el potencial de disolución mineral para movilizar metales y modificar los flujos de fluidos, la contaminación de aguas subterráneas dulces y la sismicidad inducida.

Gran parte de este trabajo será necesariamente transdisciplinario, lo que supondrá un reto para los científicos acostumbrados a los énfasis tradicionales y disciplinarios a la hora de desarrollar un lenguaje y unos enfoques compartidos. Por ejemplo, para entender cómo afecta el almacenamiento de carbono a las comunidades microbianas (por ejemplo, a través de la diversidad de especies y metanogénesis) y a las comunidades humanas, y traducir ese conocimiento en acciones de política pública e involucramiento social, requerirá que los geocientíficos colaboren y se comuniquen con biólogos, ingenieros, planificadores, la industria, gobiernos, comunidades indígenas y otros.

A la altura de las circunstancias

El almacenamiento duradero de carbono para la remoción de dióxido de carbono puede literalmente estar debajo de nosotros, pero no podemos permitir que lo esté en sentido figurado.

La percepción pública hacia la CDR está mejorando, aunque muchos geocientíficos siguen considerándola una distracción de la reducción de emisiones o, peor aún, un obstáculo que desincentivará la reducción de emisiones. Sin embargo, este riesgo — en gran medida teórico, que, vale la pena señalar, también se plantea al perseguir la adaptación y la resiliencia — puede abordarse mediante la creación de objetivos separados para la CDR y la reducción de emisiones y por otros medios de implementación estratégica. Otros ven la CDR duradera como una forma de complicidad con la industria de los combustibles fósiles y sus tácticas de retraso y distracción, o que es una alternativa opuesta a enfoques intuitivamente atractivos basados en la naturaleza.

“Debemos tener claro que las emisiones acumuladas de la humanidad, tanto hasta la fecha como en el futuro (incluso con proyecciones optimistas), nos sitúan en una senda que requiere gigatoneladas al año de CDR duradera para tener alguna esperanza de evitar un calentamiento de entre 2 °C y 3 °C”.

Pero debemos tener claro que las emisiones acumuladas de la humanidad, tanto hasta la fecha como en el futuro (incluso con proyecciones optimistas), nos sitúan en una senda que requiere gigatoneladas al año de CDR duradera para tener alguna esperanza de evitar un calentamiento de entre 2 °C y 3 °C. Y, sea cual sea el método, la mayor parte de ese carbono capturado tendrá que almacenarse en reservorios geológicos.

Desarrollar y gestionar de manera responsable el almacenamiento subterráneo de carbono representa un desafío histórico para las geociencias. Estar a la altura de estos retos servirá a la sociedad y al planeta al ayudar a mitigar las desastrosas consecuencias del cambio climático. También puede cambiar la percepción pública de este campo como anticuada o desconectada y ofrecer una misión inspiradora para las nuevas generaciones de geocientíficos.

Datos del autor

Peter Reiners (reiners@arizona.edu), Universidad de Arizona, Tucson

This translation by Saúl A. Villafañe-Barajas (@villafanne) was made possible by a partnership with Planeteando and Geolatinas. Esta traducción fue posible gracias a una asociación con Planeteando y Geolatinas.

This article does not represent the opinion of AGU, Eos, or any of its affiliates. It is solely the opinion of the author(s). Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Why Crop Yield Decreases at High Temperatures

Tue, 07/29/2025 - 12:00
Editors’ Highlights are summaries of recent papers by AGU’s journal editors. Source: AGU Advances

Observational analyses consistently find that yields of major rainfed crops increase with temperature up to a threshold of approximately 32°C, above which they reduce sharply. However, we still have a limited understanding of the explanation for such outcomes and, therefore, future yield projections are uncertain.

Agricultural productivity as a function of cumulative growing-season evapotranspiration. The connection between agricultural productivity and the cumulative water flux out of the ecosystem suggests that a land surface model that explicitly represents transpiration can be useful for exploring yield variations. Credit: Vargas Zeppetello et al. [2025], Figure 2

Vargas Zeppetello et al. [2025] explore an innovative hypothesis, which is both intuitive and revolutionary: that soil water stress limits both agricultural productivity and evaporative cooling, giving rise to increase in near surface temperature and finally decrease of yield at extremely high temperatures. In other words, they assume that water stress, and its influence on evaporative cooling, temperature, and agricultural productivity, drives the yield-temperature relationship.

To test their assumption, the authors use growing-season transpiration from an idealized land surface model as a proxy for yield. This approach reproduces the observed yield-temperature relationship, even though the model includes no mechanisms that limit productivity at high temperatures. In experiments where the influence of temperature on soil moisture is suppressed, yields still decline during hot, dry periods in a manner consistent with the observations. The authors conclude that future yield outcomes depend more critically on changes in rainfall, or irrigation, than suggested by estimates that attribute yield losses primarily to temperature variations.

Citation: Vargas Zeppetello, L. R., Proctor, J., & Huybers, P. (2025). Is water stress the root cause of the observed nonlinear relationship between yield losses and temperature? AGU Advances, 6, e2025AV001704. https://doi.org/10.1029/2025AV001704

—Alberto Montanari, Editor-in-Chief, AGU Advances

Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

The Career Issue: Winds of Change

Mon, 07/28/2025 - 13:52

Though winds may shift, science perseveres. And so do scientists. Whether change pushes them in new directions or strengthens their resolve, scientists find ways to keep doing important work.

The stories that follow highlight the journeys of scientists who have been blown off course, let the winds carry them, and stood tall in the breeze.

When, from the age of 11, one scientist knew she wanted to drive rovers on Mars, she made it happen.

When a young man saw his Narragansett community’s concerns about the degradation of local landscapes and waters, that—along with his family’s Traditional Knowledges—set him on the path to becoming a soil conservationist.

Cassius Spears Jr.: Conserving the Living Soil Jeff Massey: Atmospheric Science Meets the Private Sector Kate Mulvaney: Bringing Human Dimensions to Water Resources Lucia Perez Diaz: Expressing Earth with Art Phoebe Lam: Embracing the Ocean’s Complexities Stacey Hitchcock: From Fearing Storms to Seeking Them Susanne Maciel: Marrying Mathematics and Geology Wendy Bohon: Quelling Fears and Sparking Geoscience Joy Jess Phoenix: Curiosity Unfettered Tanya Harrison: Roving on Mars Alex Teachey: Elevating Astronomy with the Arts

When an earthquake shook an aspiring actress’s world (and her apartment), she enthusiastically asked how he could help.

When an atmospheric scientist pushed through her childhood fear of storms, she found a career studying extreme weather.

Along the way, all of the scientists profiled here connected communities, made discoveries, and had some wild adventures. May their inspiring stories help you weather whatever comes your way.

—The Editors

Citation: Editors (2025), Winds of change, Eos, 106, https://doi.org/10.1029/2025EO250267. Published on 28 July 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Where the Wind Blows

Mon, 07/28/2025 - 13:37
The Career Issue

Each year, we take a moment to appreciate the varied careers Earth and space scientists have forged. Their stories of determination, taking chances, and finding success are always inspiring.

This year’s cohort doesn’t disappoint.

In this issue we learn about 12 scientists who navigated their fields and found rewarding careers. Sometimes their plans went awry, or opportunities arose, or they found renewed purpose after taking a hard look at their priorities and interests. For Jess Phoenix, that meant running for Congress. For Lucia Perez Dias, it was illustrating a book. Alex Teachey left the theater to study physics.

Some of the scientists profiled here knew where they wanted to go, and they worked hard to get there. After hearing tribe members’ concerns about their land, a teenage Cassius Spears decided to study conservation. As a child, Tanya Harrison wanted to work with Mars rovers; as an adult, she did it.

Navigating a career has been even more challenging for some scientists this year amid drastic funding cuts, mass layoffs, and uncertainty due to shifting political priorities in the United States. These uncertainties put early-career researchers especially at risk, but senior scientists are positioned to influence institutional actions and mobilize in support of their more vulnerable colleagues, says Mark Moldwin in an opinion.

We hope you find these stories as uplifting as we do.

—Jennifer Schmidt, Managing Editor

Citation: Schmidt, J. (2025), Where the wind blows, Eos, 106, https://doi.org/10.1029/2025EO250268. Published on 28 July 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Lucia Perez Diaz: Expressing Earth with Art

Mon, 07/28/2025 - 13:34

Lucia Perez Diaz always needed a creative outlet. She studied music from an early age and played the piano through her teens. She was always the one to be scolded for doodling in class.

Wary that the hustle required by a professional career in music might be challenging and inspired by an influential Earth systems teacher, Perez Diaz chose a geology degree over a music degree when attending the Universidad de Oviedo in Spain. She then completed a master’s degree and Ph.D. in geodynamics at Royal Holloway, University of London, investigating the geologic formation and evolution of the South Atlantic Ocean.

But Perez Diaz never let go of her creative side. After years of producing intricate illustrations for her own presentations, a pandemic-era refocusing spurred her to grow her illustration business. Now she’s a published children’s book author: Her first book, How the Earth Works, hit the shelves earlier this year.

Perez Diaz’s artwork includes a geosciences poster series. Credit: Lucia Perez Diaz

“Science is full of inspiring stories,” she said. “Art is a really great vehicle to tell them.”

Perez Diaz also works as a computational geodynamicist at Halliburton. Learning to program didn’t feel natural to Perez Diaz initially, and she required a lot of support from her peers. But the fact that she eventually succeeded and built a career using those skills motivated her to take on new, unfamiliar projects—like book publishing—with zeal.

“It’s rarely about having all the skills—it’s more about giving ourselves space to learn and time to get there.”

“People often ask me, ‘How did you manage to make a book?’” she said. “I’m like, ‘Honestly, because I thought, What’s the worst that could happen?’”

She hopes to use what she’s learned to help others explore their own creativity. She hosts workshops to show aspiring illustrators that creating art isn’t as daunting as it may seem. “Often we look at others’ achievements and they make us feel like we don’t have their talent or their skills,” she said. “It’s rarely about having all the skills—it’s more about giving ourselves space to learn and time to get there.”

—Grace van Deelen (@gvd.bsky.social), Staff Writer

This profile is part of a special series in our August 2025 issue on science careers.

Citation: van Deelen, G. (2025), Lucia Perez Diaz: Expressing Earth with art, Eos, 106, https://doi.org/10.1029/2025EO250261. Published on 28 July 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Phoebe Lam: Embracing the Ocean’s Complexities

Mon, 07/28/2025 - 13:34

Phoebe Lam’s science career started when she looked up at the stars. Her father, a theoretical physicist, explained the movements of Earth, the Moon, and planets, and Lam developed an appreciation for the natural world.

Today Lam works below the stars as a marine geochemist at the University of California, Santa Cruz, studying the role particles play in the cycling of carbon, iron, and other elements in the ocean.

Early on, it was hard for Lam to fit her love for nature into the confines of a scientific discipline. As an undergraduate at the Massachusetts Institute of Technology (MIT), she enjoyed all her classes—calculus, physics, chemistry, biology—almost equally.

“I realized I like the messiness of the real world.”

Lam saw her peers joining research labs and did the same. She dove into oceanographic work with scientists at MIT and the Woods Hole Oceanographic Institution. An adviser predicted that Lam would be a “great generalist someday,” Lam said. “I wasn’t super focused—I was trying little things there, little things here. I think that still characterizes my brain.”

Drawn to work that integrated different disciplines, she joined an oceanography lab at Princeton University to study the trace metal requirements of phytoplankton.But dealing only with tightly controlled variables felt limiting. “I realized I like the messiness of the real world,” she said.

Frustrated, Lam joined the world of environmental policy—a “rebound relationship,” she said. While enrolled in a policy-focused master’s program, she took a class on carbon cycles, and found her way back to oceanography, eventually earning a Ph.D. from the University of California, Berkeley.

The twists and turns of Lam’s academic journey “made me understand…that there are a lot of ways to do science,” she said. She counsels prospective undergraduate and graduate students to think about how they might feel satisfied by their research.

For Lam, that satisfaction comes from putting together the complex puzzle of the ocean’s chemistry—from knowing there are so many different questions she can ask of the ocean.

—Grace van Deelen (@gvd.bsky.social), Staff Writer

This profile is part of a special series in our August 2025 issue on science careers.

Citation: van Deelen, G. (2025), Phoebe Lam: Embracing the ocean’s complexitiesEos, 106, https://doi.org/10.1029/2025EO250262. Published on 28 July 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Stacey Hitchcock: From Fearing Storms to Seeking Them

Mon, 07/28/2025 - 13:33

Stacey Hitchcock remembers being terrified of storms as a child. (It didn’t help that her neighbor’s house was struck by lightning three times.) But today she is an atmospheric scientist studying extreme weather at the University of Oklahoma in Norman.

Hitchcock’s younger self conquered her fears of the weather by asking lots of questions. “I remember at some point asking my dad to explain radar to me,” she said.

Hitchcock first learned that studying the weather could be a profession when she took a tour of a university in Indiana while visiting to play in a tennis tournament. “I didn’t know it was a career,” she said.

As an undergraduate, Hitchcock helped with research on climate and snow. But extreme weather was always her passion. “I kept coming back to storms,” she said. And she pushed on when she encountered adversity. Some of her classmates said she wouldn’t make it professionally as an atmospheric scientist, but Hitchcock knew she was doing good work.

“If you feel like you’re succeeding, don’t let naysayers tell you that you’re not.”

“If you feel like you’re succeeding, don’t let naysayers tell you that you’re not,” she said. “That’s advice that I try to give to students.”

Hitchcock uses both observations and simulations in her research. She is working to better understand the structure of storms that produce intense rainfall and the challenges of forecasting multiple storms that occur in close succession. She credits her wide-ranging research interests to her willingness to try out projects and develop new collaborations.

“A lot of the best things that have happened to me in my career happened because I had an interesting opportunity and I said yes,” she said.

For instance, Hitchcock spent 4.5 years in Australia as a postdoctoral researcher.

The professional connections she made abroad led to investigations of how turbulence in the atmosphere caused by storms translates into bumpy flights. Hitchcock is still involved in that field.

It’s a somewhat fitting line of work, Hitchcock admits, because she used to be a queasy flyer.

—Katherine Kornei (@KatherineKornei), Science Writer

This profile is part of a special series in our August 2025 issue on science careers.

Citation: Kornei, K. (2025), Stacey Hitchcock: From fearing storms to seeking them, Eos, 106, https://doi.org/10.1029/2025EO250263. Published on 28 July 2025. Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Wendy Bohon: Quelling Fears and Sparking Geoscience Joy

Mon, 07/28/2025 - 13:33

Like many young waitresses in Los Angeles, Wendy Bohon once dreamed of an acting career—that is, until the 1999 magnitude 7.1 Hector Mine earthquake shook up her plans (and her fourth-floor apartment).

“My surfboard fell on my head,” Bohon recalled. “I was like, ‘This is amazing.’”

The next day, she showed up at the U.S. Geological Survey office in Pasadena and asked to volunteer. They said no, but she persisted.

Eventually, Bohon helped design a public lecture series about earthquake science, which led to a job at the Pasadena office doing outreach and education.

Two decades later, she’s the branch chief for seismic hazards and earthquake engineering at the California Geological Survey, where she manages scientists who help keep people safe from earthquake hazards.

Tens of thousands of people know of Bohon for something else: science communication. Through social media, talks, and more, she shares the joy of understanding our planet with audiences that otherwise might never have taken a second look at a rock.

During grad school, Bohon experimented with how best to share science online. After earning her Ph.D. in geology in 2014, she managed communications for organizations such as Incorporated Research Institutions for Seismology (IRIS; now part of EarthScope) and NASA Goddard and even started her own science communication company. Outreach isn’t part of her current job, but she continues doing it in her free time.

“I care a lot about people, and I have anxiety,” Bohon said. “I know that earthquakes induce a lot of anxiety in people.”

Quelling anxiety isn’t her only goal. She also wants to inspire. Among other pursuits, she’s an ambassador for IF/THEN, an initiative that highlights women role models in science, technology, engineering, and mathematics (STEM) fields.

Bohon wants aspiring scientists to know that there’s a “whole ecosystem of science careers.” She especially dislikes the “leaky pipeline” metaphor that people use to describe the tendency of women to leave academia at higher rates than men, especially after becoming parents.

“You’re not lost. You’re just taking a different path, and your science knowledge goes with you wherever you go.”

Bohon was 7 months pregnant when she defended her Ph.D. And after taking a hard look at what an academic career would mean for her family, she decided it wasn’t for her. So she took her expertise and infectious enthusiasm elsewhere.

“They’re implying that if you don’t follow this very narrow path, that you’re leaking out, that you’re lost,” Bohon said. “You’re not lost. You’re just taking a different path, and your science knowledge goes with you wherever you go.”

—Elise Cutts (@elisecutts), Science Writer

This profile is part of a special series in our August 2025 issue on science careers.

Citation: Cutts, E. (2025), Wendy Bohon: Quelling fears and sparking geoscience joyEos, 106, https://doi.org/10.1029/2025EO250266. Published on 28 July 2025. Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Tanya Harrison: Roving on Mars

Mon, 07/28/2025 - 13:33

When NASA deployed a small six-wheeled robot named Sojourner on Mars in 1997, space-obsessed 11-year-old Tanya Harrison was watching.

“When NASA released the little animated GIF of Sojourner driving onto the surface, I thought, ‘I want to work on Mars rovers,’” she said. “I was laser focused on that goal from there out.”

A bad experience getting a master’s degree soured her on academia. To keep connected to the world of research, she looked for jobs that used her data analysis skills.

“I started emailing people who had written the papers that I read for my [master’s] thesis and saying, ‘Hey, do you need somebody to crunch data for you?’” Harrison said. Those emails led to a job at Malin Space Science Systems, which gave her experience operating cameras on the Mars Reconnaissance Orbiter. But she realized she wanted more, which meant going back for a Ph.D. in geology and planetary science.

With doctorate in hand, Harrison fulfilled her dream of being directly involved with the Opportunity rover, along with planning the Curiosity and Perseverance rover missions. “I was on the teams advocating for both Gale and Jezero [craters], so we went to all the places that I was hoping we would go!” she said.

Meanwhile, she made a splash posting about her life as a scientist on Twitter (now X), which led to the media’s seeking her out as an expert on all things Martian. “It hit me that I could make a bigger difference by inhabiting that role in the community than if I were just a scientist,” she said.

“My underlying goal is really to get all pieces of the larger space sector working together and bene-fiting each other.”

Today Harrison works as an independent consultant for space companies based in her native Canada. She served on AGU’s Board of Directors and still works on its Finance Committee. Her current life means less Mars work but more essential Earth observation research focused on climate change.

“My underlying goal is really to get all pieces of the larger space sector working together and benefiting each other,” she said, referring to academia, government, and private industry. “Forty percent of the Canadian landmass is in the Arctic, so we have a vested interest in being a leader in climate research.”

—Matthew R. Francis (@BowlerHatScience.org), Science Writer

This profile is part of a special series in our August 2025 issue on science careers.

Citation: Francis, M. R. (2025), Tanya Harrison: Roving on Mars, Eos, 106, https://doi.org/10.1029/2025EO250265. Published on 28 July 2025. Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Susanne Maciel: Marrying Mathematics and Geology

Mon, 07/28/2025 - 13:32

Susanne Maciel’s path into geophysics was not straight.

After finishing high school, Maciel was drawn to math because of a description she read in a Universidade de Brasília (UnB) student guide. “It was so beautiful,” she recalled. “It said math is, at the same time, a philosophy, a science, and an art.”

As she advanced toward her bachelor’s degree, the description proved true. “But I wanted to solve real-life problems, to go somewhere I could apply all I had learnt,” she said. At a career fair, Maciel learned about geology and realized geophysics was “the marriage between mathematics and geology.” Coming from a family of mostly visual artists, that educational choice was a point out of the curve.

After completing a master’s degree in geology at UnB, Maciel went on to pursue a doctorate at the Universidade Estadual de Campinas, in São Paulo state. She worked with seismic wave monitoring during her Ph.D., and now, 15 years after returning to Brasília, she works at UnB’s Seismological Observatory.

Maciel studies the slight tremors that happen every day. “We study environmental noise; a vibration caused by cars passing or wind blowing is different from that [caused] by landslides or mudslides,” she said. Maciel does a lot of signal processing work looking at data from seismometers spread across Goiás state.

“This course keeps me rooted in reality.”

“We’re trying to catch specific seismic signatures of landslides before they happen,” she said. “That can help civil defense evacuate risk areas before disasters hit.”

Maciel is also a math professor in UnB’s education department, where she teaches undergraduate students from rural areas and traditional communities near Brasília. The training focuses on the realities and needs of the countryside, she said. Geophysics helps her bring real-life examples of math to her classes.

At the end of the day, teaching is a win-win, Maciel said. Her students “know the rocky outcrops and formations of their regions, and I learn a lot from them. We exchange views on nature but also affection. This course keeps me rooted in reality.”

—Meghie Rodrigues (@meghier.bsky.social), Science Writer

This profile is part of a special series in our August 2025 issue on science careers.

Citation: Rodrigues, M. (2025), Susanne Maciel: Marrying mathematics and geologyEos, 106, https://doi.org/10.1029/2025EO250264. Published on 28 July 2025. Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Kate Mulvaney: Bringing Human Dimensions to Water Resources

Mon, 07/28/2025 - 13:30

As a social scientist, Kate Mulvaney researches the intersection of coastal water quality and human populations and behavior.

“People are affected by environmental problems, and people are ultimately going to have to protect the environment or improve the environment,” she said.

After earning her undergraduate degree in marine biology, Mulvaney joined the U.S. Peace Corps as a coastal management resources volunteer in the Philippines.

“It was an exciting position,” she recalled. “We did a lot of snorkeling, diving, reef surveys, and fish counting—the work that a lot of people dream they’re going to do [as] a marine biologist when they grew up.”

She soon realized that the data she and her team were collecting would be more powerful in the hands of people and communities who could use them to inform and enforce more environmentally conscious practices.

“That’s where I started to springboard into human dimensions work,” she said.

Mulvaney earned a master’s degree in marine affairs, a field at the intersection of marine science and marine policy, after which she took a fellowship at the U.S. State Department. There, she learned more about high-level decisionmaking that affects international ocean treaties and policies, which helped contextualize some of the local impacts she had seen earlier in her career.

“There was this consistent call for more social science data in [the] environmental governance space, but there weren’t very many people doing it.”

Both in small Filipino fishing towns and at the State Department, “there was this consistent call for more social science data in [the] environmental governance space, but there weren’t very many people doing it,” Mulvaney said.

That led her to pursue a doctorate in natural resources social science studying fisheries and climate change on the Great Lakes. Mulvaney joined the U.S. EPA more than a decade ago and was the third social scientist ever hired by EPA’s Office of Research and Development.

Over time, Mulvaney has witnessed other fields increasingly recognize the need to consider the human aspects of environmental science and governance.

“That’s been a slow, slow burn,” she said, but it has been rewarding to see her field become more mainstream within the science community.

She’s also experienced that recognition firsthand. In early January 2025, she became the first EPA social scientist to win the Presidential Early Career Award for Scientists and Engineers.

That acknowledgment “felt like a collective win” for environmental social scientists, she said. “I think it says a lot about the evolution of thinking across disciplines.”

—Kimberly M. S. Cartier (@astrokimcartier.bsky.social), Staff Writer

This profile is part of a special series in our August 2025 issue on science careers.

Citation: Cartier, K. M. S. (2025), Kate Mulvaney: Bringing human dimensions to water resources, Eos, 106, https://doi.org/10.1029/2025EO250260. Published on 28 July 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Jess Phoenix: Curiosity Unfettered

Mon, 07/28/2025 - 13:29

Jess Phoenix’s career as a volcanologist and science consultant has taken her around the world. She earned a bachelor’s degree in history from Smith College in Northampton, Mass., and a master’s in geology from California State University, Los Angeles.

“I was definitely a latecomer to the geo-party, but I dove in wholeheartedly,” Phoenix said.

She moved to Australia seeking a geology doctorate from Queensland University of Technology, but she fell out with her adviser and left without finishing her dissertation.

Leaving the program for which she had uprooted her family was terrifying, she said. But she soon realized that doctor or not, her geology education had provided her with a very marketable set of skills. (It was also around that time that she got the first of her many tattoos.)

“Geology is literally everywhere,” she said. “With the skill set you gain, even if you haven’t done the most terminal degree possible, you still have a very solid core of skill sets—pun intended.” Whether it’s making a detailed rock description (important in many industries), analyzing macro- and microscale problems, writing reports, or understanding the scientific method, “those are, fundamentally, extremely valuable skills,” she said. “Once you have them, no one can take them away from you.”

“As long as you maintain that curiosity, that flexibility, that willingness to interrogate your own assumptions and beliefs, you’re going to be OK.”

Phoenix’s wide-ranging career has taken her from the depths of the sea to fields of flowing lava. She wrote a memoir, consults on TV shows and documentaries, and appears as a subject matter expert on international news networks. She cofounded the environmental nonprofit Blueprint Earth, is a fellow of The Explorers Club, and ran for U.S. Congress in 2018.

“By allowing my curiosity to be pretty much unfettered, it’s given me a lot of opportunities to just try things and say yes,” Phoenix said. “You’ve got to be willing to take in new information and update your worldview constantly with your own career as well as your scientific interest. As long as you maintain that curiosity, that flexibility, that willingness to interrogate your own assumptions and beliefs, you’re going to be OK.”

Phoenix also emphasized how crucial staying connected with other scientists has been in her career. “Support their work and be their cheerleaders, and they’ll do the same for you.”

She was an ambassador for the Union of Concerned Scientists for 2 years and has recently returned to freelance science consulting, leading field research expeditions, and personally advocating for science.

“I’m in my own period of shifting and change,” Phoenix said, “but the rocks are always solid beneath my feet.”

—Kimberly M. S. Cartier (@astrokimcartier.bsky.social), Staff Writer

This profile is part of a special series in our August 2025 issue on science careers.

Citation: Cartier, K. M. S. (2025), Jess Phoenix: Curiosity unfettered, Eos, 106, https://doi.org/10.1029/2025EO250259. Published on 28 July 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Jeff Massey: Atmospheric Science Meets the Private Sector

Mon, 07/28/2025 - 13:29

A ski racer by the age of six, Jeff Massey has been searching for snow nearly his whole life. “I was tracking snowstorms and nor’easters much more than a first grader should,” he said. When he was in elementary school, his mother took him to visit a local TV meteorologist, who explained how weather forecasting worked.

“After that, I knew that’s what I wanted to do,” Massey said.

As an undergraduate at Cornell University, Massey studied atmospheric science, then went on to complete a Ph.D. at the University of Utah, studying the impacts of dust events on snow and completing a dissertation focused on weather modeling. He helped other researchers with projects related to snow, too.

After graduate school, Massey mulled over whether he should stay in academia or work in industry. He chose a role supporting a weather data platform for farmers run by the Climate Corporation, an agricultural technology company. He was pleased to find that what he loved about academia—the opportunity to produce original, unique research—was part of the job there, too, with the added benefit that his research had a direct application to farmers’ operations.

“I’ve done agriculture, I’ve done drone delivery, and now I’m doing finance. It’s interesting how related it all is.”

Massey then moved into roles at Amazon, where he used his weather modeling expertise to inform the company’s supply chain operations and, later, to build a new weather modeling infrastructure for Amazon’s drone delivery service.

Now he wields his atmospheric science skills to project how weather might affect certain energy and commodity markets for Squarepoint Capital, an investment firm.

“I’ve done agriculture, I’ve done drone delivery, and now I’m doing finance,” he said. “It’s interesting how related it all is—it’s all just different applications of weather data, machine learning, and programming.”

Businesses will need more weather expertise as climate change progresses and the economic impacts of extreme weather add up, he added. “Weather is still one of those variables you can’t control.”

—Grace van Deelen (@gvd.bsky.social), Staff Writer

This profile is part of a special series in our August 2025 issue on science careers.

Citation: van Deelen, G. (2025), Jeff Massey: Atmospheric science meets the private sector, Eos, 106, https://doi.org/10.1029/2025EO250258. Published on 28 July 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Hermínio Ismael de Araújo Júnior: Savvy Planning Can Get You Far

Mon, 07/28/2025 - 13:28

When Hermínio Ismael de Araújo Jr. started his undergraduate degree in biology in 2006, the culture at Universidade Federal do Rio Grande do Norte, in northeastern Brazil, was that students got involved in research as early as possible. So at the end of Araújo’s first semester, he joined an animal physiology project and studied how local plants affected diabetic mice.

“But I’ve always liked paleontology better,” he said, so much so that his lab adviser introduced him to paleontologist Kleberson Porpino.

“We talked a lot, and I realized paleontology was really what I wanted to do,” Araújo recalled. From that moment on, he thought his professional path was clear: After graduation, he would get his master’s and doctorate at the Universidade Federal do Rio de Janeiro (UFRJ), just as Porpino had done not long before.

Araújo was interested in taphonomy, or the study of how bones become fossils. Being a taphonomist is like doing forensics, Araújo said. “We can understand how an animal died, how it got buried, the [geological] processes that happened after that…until the moment we find it.”

The most interesting thing about paleontology “is to be able to give life to something that will never have life again.”

The most interesting thing about paleontology “is to be able to give life to something that will never have life again,” he said.

Halfway to finishing his bachelor’s degree, Araújo looked closely at the selection requirements for a master’s degree in geology at UFRJ. In Brazil, students can enroll in a master’s only after coursework for a bachelor’s degree is completed and their diploma has been conferred, which can take some time after their final semester.

“I didn’t want to wait a year after graduation to start my master’s,” he said.

So he finished his last year of courses a semester early so he could squeeze in a thesis defense and an enrollment in the master’s program in the same year.

Years later, as Araújo was pursuing his Ph.D., a faculty position opened at the Universidade do Estado do Rio de Janeiro (UERJ). Deciding to go for it, he again fast-tracked his degree work, defending his thesis a semester earlier than the official deadline so that he could assume the teaching position he currently holds.

“I’ve been working to help open more space for women and other minoritized groups at the university.”

Araújo said these sharp planning skills were inspired by his parents, who could not access higher education themselves but always encouraged their children to study. “My father is really organized—he does nothing without prior planning,” Araújo said. “My parents are so methodic that up to this day they still go to the supermarket [every week] at the same day and time,” he said, chuckling.

Araújo is currently president of the Brazilian Society of Paleontology and the graduate coordinator of the geosciences program at UERJ. In these positions, he engages in education programs against harassment and discrimination. “I’ve been working to help open more space for women and other minoritized groups at the university,” he said. “It is something I really like and am very proud of.”

—Meghie Rodrigues (@meghier.bsky.social), Science Writer

This profile is part of a special series in our August 2025 issue on science careers.

Citation: Rodrigues, M. (2025), Hermínio Ismael de Araújo Júnior: Savvy planning can get you far, Eos, 106, https://doi.org/10.1029/2025EO250257. Published on 28 July 2025. Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Cassius Spears Jr.: Conserving the Living Soil

Mon, 07/28/2025 - 13:28

Cassius Spears Jr.’s lifelong partnership with the living soil is rooted in the Narragansett Indian Tribe’s cultural ties to the land and subsistence way of life.

Spears grew up on his family’s ancestral land in what is now Rhode Island, hunting, foraging, and learning the traditional place knowledge of his ancestors. As a teenager, he attended community meetings in which Narragansett people discussed concerns about degradation across important landscapes and waters and how it affected harvesting practices and ways of life.

“Witnessing that firsthand concern, as well as witnessing my family’s traditional knowledge of place and what that looks like within landscapes and waterways, inspired me to go down the road of conservation,” he said.

Spears studied environmental conservation at the University of Rhode Island in South Kingstown and the University of Notre Dame in Indiana. In school, he frequently encountered scientific concepts that clashed with what his people’s ecological knowledge holds true.

“Early in my education, I was taught to think about soil in physical, taxonomical, or inert ways, which ran [in] conflict with traditional knowledge of soil as living or life-giving,” he said.

“When you live with the land, you inherently build a relationship.”

On soil and many ecological concepts, Spears said that he has seen a greater acceptance in scientific understanding. “Now soil health concepts have aligned with Traditional Ecological Knowledge and perceive soil as a vital living ecosystem,” he said.

In his career as a soil conservationist with the U.S. Department of Agriculture’s Natural Resources Conservation Service office in Rhode Island, Spears has worked to deepen the understanding between these sources of ecological knowledge. He said that local farmers and other land stewards have been especially receptive to incorporating Traditional Ecological Knowledge into their practices.

“When you live with the land, you inherently build a relationship,” Spears said. “Many farmers understand this; connecting with natural processes every season creates a tangible bond with the land and a sense of responsibility to manage it in a good way.”

Spears takes great pride in the relationships his team has developed with local communities, partnering on projects that improve agricultural soil conservation, restore habitats, and fix riparian forest buffers. He said that having trust and patience, as well as immersing yourself in a community, is the key to building long-lasting and successful collaborations.

“Change doesn’t happen overnight, and it’s essential to listen to and engage with community members genuinely,” he said. “Seeing our local communities lead conservation work inspires me and fills me with hope for future generations.”

—Kimberly M. S. Cartier (@astrokimcartier.bsky.social), Staff Writer

This profile is part of a special series in our August 2025 issue on science careers.

Citation: Cartier, K. M. S. (2025), Cassius Spears Jr.: Conserving the living soil, Eos, 106, https://doi.org/10.1029/2025EO250256. Published on 28 July 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer