Feed aggregator

Rift Zone Architecture and Inflation‐Driven Seismicity of Mauna Loa Volcano

JGR–Solid Earth - Wed, 09/11/2024 - 14:10
Abstract

The 2022 eruption at Mauna Loa, Hawai'i, marked the first extrusive activity from the volcano after 38 years of quiescence. The eruption was preceded by several years of seismic unrest in the vicinity of the volcano's summit. Characterizing the structure and dynamics of seismogenic features within Mauna Loa during this pre-eruptive interval may provide insights into how pre- and co-eruptive processes manifest seismically at the volcano. In particular, the extent to which seismicity may be used to forecast the location and timing of future eruptions is unclear. To address these questions, we construct a catalog of relocated seismicity on Mauna Loa spanning 2011–2023. Our earthquake locations image complex, sub-kilometer-scale seismogenic structures in the caldera and southwest rift zone. We additionally identify a set of streaks of seismicity in the volcano's northwest flank that are radially oriented about the summit. Using a rate-and-state friction model for earthquake occurrences, we demonstrate that the seismicity rate in this region can be modeled as a function of the stressing history caused by magma accumulation beneath the summit. Finally, we observe a mid-2019 step change in the seismicity rate in the Ka'oiki region that may have altered the stress state of the northeast rift zone in the three years before the eruption. Our observations provide a framework for interpreting future seismic unrest at Mauna Loa.

Mid‐Latitude Auroras and Energetic Particle Precipitation Occurred Unusually in a Moderate Magnetic Storm on 1 December 2023

GRL - Wed, 09/11/2024 - 13:50
Abstract

Mid-latitude auroras are conventionally generated during intense magnetic storms. However, mid-latitude auroras were observed by naked eyes at Beijing China (39°N, 116°E) unusually during a moderate storm event on 1 December 2023 with the minimum Sym-H index only ∼ ${\sim} $ −120 nT. This study combines conjugative in-site and ground-based observations to analyze the auroras and underlying physical processes. Results indicate that both electron and proton auroras appeared at low latitudes. Electron auroras predominantly arise from low-energy electron precipitation, but proton auroras may be explained by energetic tens of keV proton precipitation. Pc1/EMIC waves are observed at low latitudes in the ionosphere, potentially accounting for mid-latitude proton auroras. Downward field-aligned currents (FACs) are also detected at low latitudes, producing significant magnetic perturbations. This study reveals the underlying ionospheric responses to the mid-latitude auroras to understand potential reasons for observing aurora at such mid-latitudes during a moderate storm.

Seamounts Enhance the Local Emission of CO2 in the Northern South China Sea

GRL - Wed, 09/11/2024 - 13:44
Abstract

The South China Sea is a typical marginal sea characterized by the presence of numerous seamounts. However, the effect of seamounts on the air-sea CO2 flux has not yet been well studied. In September 2021, the air-sea CO2 flux was measured directly using eddy covariance (EC), and discrete waterside sampling was conducted. The results indicate that the northern South China Sea is a source of atmospheric CO2. Furthermore, EC measurements show that the seamount emits CO2 at an average rate of 0.34 mmol m−2 hr−1, nearly double that of non-seamount areas. We suggest that the upwelling around the seamount transports deep water rich in dissolved inorganic carbon to the upper ocean, increasing the partial pressure of CO2 there. In addition, the increase in nutrients caused by the upwelling would increase the concentration of chlorophyll-a, resulting in a productive area that emits CO2.

Separating Injection‐Driven and Earthquake‐Driven Induced Seismicity by Combining a Fully Coupled Poroelastic Model With Interpretable Machine Learning

GRL - Wed, 09/11/2024 - 12:44
Abstract

In areas of induced seismicity, earthquakes can be triggered by stress changes due to fluid injection and static deformation from fault slip. Here we present a method to distinguish between injection-driven and earthquake-driven triggering of induced seismicity by combining a calibrated, fully coupled, poroelastic stress model of wastewater injection with interpretation of a machine learning algorithm trained on both earthquake catalog and modeled stress features. We investigate seismicity from Paradox Valley, Colorado as an ideal test case: a single, high-pressure injector that has induced thousands of earthquakes since 1991. Using feature importance analysis, we find that injection-driven earthquakes are approximately 22± $\pm $5% of the total catalog but act as background events that can trigger subsequent aftershocks. Injection-driven events also have distinct spatiotemporal clustering properties with a larger b-value, closer proximity to the well, and earlier occurrence in the injection history. Generalization of our technique can help characterize triggering processes in other regions where induced seismicity occurs.

Global Compression of the Plasma Sheet and Magnetotail During Intense Storms From THEMIS Observations

JGR:Space physics - Wed, 09/11/2024 - 04:08
Abstract

We estimate the global impact of storms on the global structure and dynamics of the night side plasma sheet from observations by the NASA mission Time History of Events and Macroscale Interactions during Substorms (THEMIS). We focus on an intense storm occurring in December 2015 triggered by interplanetary coronal mass ejections (ICMEs). It starts with a storm sudden commencement (SSC) phase (SYM-H ∼ ${\sim} $ +50 nT) followed by a growth phase (SYM-H ∼ ${\sim} $ −188 nT at the minimum) and then a long recovery phase lasting several days. We investigate THEMIS observations when the spacecraft were located in the midnight sector of the plasma sheet at distances typically between 8 and 13 Earth's radii. It is found that the plasma sheet has been globally compressed up to a value of about ∼> ${\sim} > $4 nPa during the SSC and main phases, that is, 8 times larger than its value during the quiet phase before the event. This compression occurs during periods of high dynamic pressure in the ICME (20 nPa) about one order of magnitude larger than its value in the pristine solar wind. We infer a global increase of the lobe magnetic field from 30 to 100 nT, confirmed by THEMIS data just outside the plasma sheet. During the SSC and main phases, the plasma sheet is found thinner by a factor of 2 relative to its thickness at quiet times, while the Tsyganenko T96 magnetic field model shows very stretched magnetic field lines from inner magnetospheric regions toward the night side. During the recovery phase, whereas the interplanetary pressure has dropped off, the plasma sheet tends to gradually recover its quiet phase characteristics (pressure, thickness, magnetic configuration, etc.) during a long recovery phase of several days.

Fine Shallow Structures of Binchuan Basin Inverted From Receiver Functions and Implications for Basin Evolution

JGR–Solid Earth - Tue, 09/10/2024 - 17:29
Abstract

The understanding of the velocity structure and basement morphology within the basin is crucial for seismic hazard mitigation and the study of basin evolution. To explore the intricate structure of the Binchuan Basin in western Yunnan, China, we deployed a linear dense array in the northern region of the Binchuan Basin, with inter-station distance ranging from 50 to 100 m. We propose a novel receiver function processing workflow. Initially, we extracted coherent receiver functions based on the dense array, followed by a inversion of basement morphology, S-wave velocities, and sedimentary layer's average V p /V s ratio jointly with frequency-dependent teleseismic apparent shear velocity and receiver function waveforms. The results show that S-wave velocity anomalies correspond to the unconsolidated sediments. The thickness of the sedimentary layer ranges from ∼0.5 to ∼0.75 km. The basement morphology suggests the basin is controlled by normal faults. Additionally, intra-basin faults displayed higher fault displacement to length ratios (∼0.27) than most isolated normal faults (10−3–10−1), which may result from accumulated fault displacement due to interactions between fault segments. These results emphasize the significant role of N–S trending intra-basin faults in basin evolution, suggesting that micro-block rotations and transitional movements within the Northwestern Yunnan Rift Zone are primary mechanisms shaping the Binchuan Basin. We further proposed a multi-stage model for the evolution of the Binchuan Basin. The robustness testing validates that the proposed processing flow is an effective approach to comprehensively image the basin velocity structure and the basement morphology.

Using Satellite Observations of Lightning and Precipitation to Diagnose the Behavior of Deep Convection in Tropical Cyclones Traversing the Midlatitudes

JGR–Atmospheres - Tue, 09/10/2024 - 17:25
Abstract

This study uses a unique combination of geostationary and low-Earth orbiting satellite-based lightning and precipitation observations, respectively, to examine the evolution of deep convection during the tropical cyclone (TC) lifecycle. The study spans the 2018–2021 Atlantic Basin hurricane seasons and is unique as it provides the first known analysis of total lightning (intra-cloud and cloud-to-ground) observed in TCs through their extratropical transition and post-tropical cyclone (PTC) phases. We consider the TC lifecycle stage, geographic location (e.g., land, coast, and ocean), shear strength, and quadrant relative to the storm motion and environmental shear vectors. Total lightning maxima are found in the forward right quadrant relative to storm motion and downshear of the TC center, consistent with previous studies using mainly cloud-to-ground lightning. Increasing environmental shear focuses the lightning maxima to the downshear right quadrant with respect to the shear vector in tropical storm phases. Vertical profiles of radar reflectivity from the Global Precipitation Measurement mission show that super-electrically active convective precipitation features (>75 flashes) within the PTC phase of TCs have deeper mixed phase depths and higher reflectivity at −10°C than other phases, indicating the presence of more intense convection. Differences in the net convective behavior observed throughout TC evolution manifest in both the TC-scale frequency of lightning-producing cells and the intensity variations amongst individual convective cells. The combination of continuous lightning observations and precipitation snapshots improves our understanding of convective-scale processes in TCs, especially in PTC phases, as they traverse the tropics and mid-latitudes.

Revisiting the Excitation of Free Core Nutation

JGR–Solid Earth - Tue, 09/10/2024 - 17:19
Abstract

Earth possesses a Poincaré mode called Free Core Nutation (FCN) due to the misalignment of the rotation axes of the mantle and fluid outer core. FCN is the primary signal in the observations of Celestial Pole Offsets (CPO) and maintained by geophysical mechanisms that are yet to be understood. Earlier studies suggested an origin in Atmospheric Angular Momentum (AAM)—and to a lesser degree Oceanic Angular Momentum (OAM)—but discrepancies between these geophysical excitations and the geodetic (CPO-based) excitation were too large to reach definite conclusions. Here we use newly calculated, 3-hourly AAM and OAM series for the 1994–2022 period, in conjunction with the latest CPO series from the International Earth Rotation and Reference Systems Service (IERS 20 C04 series), to demonstrate a markedly lower power ratio (∼ ${\sim} $4.6) of geophysical over geodetic excitation at the FCN frequency compared to previous works (ratio ∼ ${\sim} $10). Among all excitation sources, the AAM pressure term exhibits the highest coherence (0.56) and correlation (0.48) with the geodetic excitation, whereas the coherence with OAM is smaller by a factor of 3. Similar analyses using existing angular momentum series give comparable, albeit smaller coherence and correlation results. We attribute the relevant AAM pressure term signal to Northern Hemispheric landmasses and further show consistent temporal variations in the amplitude of geophysical and geodetic excitations around the FCN band. Our results thus corroborate evidence for large-scale atmospheric mass redistribution to be the main cause of continuous FCN excitation.

Role of Organic Vapor Precursors in Secondary Organic Aerosol Formation: Concurrent Observations of IVOCs and VOCs in Guangzhou

JGR–Atmospheres - Tue, 09/10/2024 - 17:15
Abstract

Secondary organic aerosol (SOA) formed through the atmospheric transformation of organic vapors constitutes a significant portion of fine particulate matter or PM2.5. While recent laboratory studies underscore the importance of intermediate-volatility organic compounds (IVOCs) as key precursors to SOA, field observations that recognize the role of both volatile organic compounds (VOCs) and IVOCs in SOA formation remain scarce. In this study, we conducted concurrent measurements of VOCs and IVOCs in ambient air at urban and suburban sites in Guangzhou during a PM2.5 pollution event in winter 2021. The results reveal that between 12:00–15:00 local time, the photochemically adjusted initial concentrations of VOCs at both sites were approximately 7 times higher than that of IVOCs. However, the SOA formation potential (SOAFP) of primary hydrocarbon IVOCs exceeded that of VOCs by over 3–4 times. Receptor modeling results further indicated that while ship emissions contributed to less than 10% of the C2–C22 primary hydrocarbons concentration (VOCs + primary carbonaceous IVOCs), they accounted for the most significant source (approximately 40%) of SOA formation. This study highlights the substantial role of IVOCs in SOA formation and emphasizes the importance of future PM2.5 pollution control measures targeting major IVOCs contributors, such as ship emissions in harbor cities.

A Mid‐Crustal Channel of Positive Radial Anisotropy Beneath the Eastern South China Block From F‐J Multimodal Ambient Noise Tomography

GRL - Tue, 09/10/2024 - 16:39
Abstract

We investigated the crustal radial anisotropy in the eastern South China Block (ESCB) with the F-J multimodal ambient noise tomography. Well corresponding to widespread mid-crustal low-velocity zones in the VSV ${V}_{SV}$ model, a pronounced mid-crustal channel of positive radial anisotropy is revealed. In the Cathaysia Block, it may origin from sub-horizontally aligned quartz induced by extension and correspond to the phase transition of α $\alpha $ to β $\beta $ quartz. In other areas, while, it may be relevant to other well-aligned minerals. This positive mid-crustal radial anisotropy channel not only provides the solid evidence for dominative extensional deformation since late Mesozoic, but also may indicate an important detachment surface, contributing much to the early Mesozoic magmatism in the ESCB.

Issue Information

JGR–Atmospheres - Tue, 09/10/2024 - 15:58

No abstract is available for this article.

Inferring the Speed of Sound and Wind in the Nighttime Martian Boundary Layer From Impact‐Generated Infrasound

GRL - Tue, 09/10/2024 - 15:45
Abstract

The properties of the first kilometers of the Martian atmospheric Planetary Boundary Layer have until now been measured by only a few instruments and probes. InSight offers an opportunity to investigate this region through seismoacoustics. On six occasions, its seismometers recorded short low-frequency waveforms, with clear dispersion between 0.4 and 4 Hz. These signals are the air-to-ground coupling of impact-generated infrasound, which propagated in an low-altitude atmospheric waveguide. Their group velocity depends on the structure of effective sound speed in the boundary layer. Here, we conduct a Bayesian inversion of effective sound speed up to 2,000 m altitude using the group velocity measured for events S0981c, S0986c and S1034a. The inverted effective sound speed profiles are in good agreement with estimates provided by the Mars Climate Database. Differences between inverted and modeled profiles can be attributed to a local wind variation in the impact→station direction, of amplitude smaller than 2 m/s.

The Effect of Nitrogen on the Dihedral Angle Between Fe−Ni Melt and Ringwoodite: Implications for the Nitrogen Deficit in the Bulk Silicate Earth

GRL - Tue, 09/10/2024 - 15:36
Abstract

Nitrogen (N) is extremely depleted in the bulk silicate Earth (BSE). However, whether the silicate magma ocean was as N-poor as the present-day BSE is unknown. We performed multi-anvil experiments at 20 GPa and 1,673−2,073 K to determine the dihedral angle of Fe−Ni−N alloy melt in ringwoodite matrix to investigate whether percolation of Fe-rich alloy melt in the solid mantle can explain N depletion in the BSE. The dihedral angles ranged from 112° to 137°, surpassing the wetting boundary. Our experiments suggest that N removal from the mantle by percolation of Fe-rich alloy melt to the Earth's core is unlikely. Therefore, besides N loss to space during planetesimal and planetary differentiation, as well as its segregation into the Earth core, the stranded Fe-rich metal in the deep mantle could be a hidden N reservoir, contributing to the anomalous depletion of N in the observable BSE.

The Influence of Large‐Scale Spatial Warming on Jet Stream Extreme Waviness on an Aquaplanet

GRL - Tue, 09/10/2024 - 14:39
Abstract

The effect of modified equator-to-pole temperature gradients on the jet stream by low-level polar warming and upper-level tropical warming is not fully understood. We perform aquaplanet simulations to quantify the impact of different sea surface temperature distributions on jet stream strength, large wave amplitudes and extreme waviness. The responses to warming in the waviness metrics Sinuosity Index and Local Wave Activity are sensitive to the latitude range over which they are calculated. Therefore, we use a latitude range that accurately represents the position of the jet. The uniform warming scenario strengthens the jet and reduces large wave amplitudes. Reductions in meridional temperature gradients lead to weakened mid-latitudinal jet strength and show significant decreases in large wave amplitudes and jet stream waviness. These findings contradict the mechanism that weakened jet streams increase wave amplitudes and extreme jet stream waviness. We conclude that weakened jet streams do not necessarily become wavier.

A Systematic Review of Meta‐Surface Based Antennas for Thz Applications

Radio Science - Tue, 09/10/2024 - 12:48
Abstract

The growing demand for advanced wireless communication, high-resolution imaging, and innovative medical applications in the Terahertz (THz) frequency range has driven remarkable developments in meta-surface-based antennas. This comprehensive review delves into the cutting-edge advancements, novel designs, and practical applications of meta-surfaces in the THz spectrum. The review begins by exploring the materials employed in meta-surfaces and their crucial role in achieving efficient THz operation. It delves into the realm of polarization diversity, revealing innovative approaches to harnessing the potential of meta-surfaces for polarization control and conversion. A key area of focus is beam-steering technology, with a thorough investigation into beam-steering techniques that have significant implications for enhancing wireless communication, high-resolution imaging, and the internet of things. The paper highlights the potential of these techniques in addressing real-world challenges and advancing THz technology. Furthermore, this review provides an in-depth examination of the innovative antenna designs tailored for THz applications, shedding light on their characteristics and benefits. It also explores the exciting possibilities of THz technology within the medical field, including precise bio sensing and cancer cell detection.

Issue Information

GRL - Tue, 09/10/2024 - 12:38

No abstract is available for this article.

Issue Information

Radio Science - Tue, 09/10/2024 - 06:08

No abstract is available for this article.

Data Assimilation of Ion Drift Measurements for Estimation of Ionospheric Plasma Drivers

Space Weather - Tue, 09/10/2024 - 04:18
Abstract

During geomagnetic storms, the capabilities of current climate models in predicting ionospheric behavior are notably limited. A data assimilation tool, Estimating Model Parameters Reverse Engineering (EMPIRE), implements a Kalman filter to ingest electric density rate correcting the background electric potential and neutral wind. For the baseline setup, or case (1), EMPIRE ingests electron density global map output from the Ionospheric Data Assimilation 4-Dimensional (IDA4D) algorithm. In this work, a new augmentation method is evaluated in which ion drift measurements are also assimilated into EMPIRE. The ion drift measurements used in the new augmentation method are obtained from Super Dual Auroral Radar Network (SuperDARN) sites in the mid-to-high latitude region of the northern hemisphere. Cases (2) and (3) are set up for evaluating the impacts from ingesting different types of observations: SuperDARN fit and grid data, respectively. Six independent data sources are used as validation data sets to compare outcomes with or without ingesting ion drifts. One is the vector ion velocities derived from the Millstone Hill Incoherent Scatter Radar (MHISR) and a second is the vertical drift from Arecibo site. The other four are SuperDARN ion velocity grid data from Saskatoon, Kapuskasing, Christmas Valley West, and Hokkaido East. Results show improvements in performance at mid-latitudes by augmenting electron density rates with 3D spatially distributed line-of-sight ion drift measurements, with negligible improvements to low and high latitude estimations. The lack of improvement at high-latitudes is attributed to the increase in EMPIRE ion drift error poleward of 60° magnetic.

Auroral Bead Propagation: Explanation Based on the Conservation of Vorticity

JGR:Space physics - Sun, 09/08/2024 - 20:55
Abstract

The beading of auroral arcs often takes place at substorm onset. It is known that auroral beads propagate more often eastward than westward at several km/s, which is difficult to explain by existing models. We investigate this issue observationally and theoretically. First, based on previous research and additional statistical analysis, we suggest that (a) auroral beads often propagate eastward in the presence of westward background convection, and (b) background ionospheric convection may be better represented by large-scale convection for westward propagation, and by meso-scale convection for eastward propagation. Then we model auroral beads as vortices of ionospheric flow, and consider the longitudinal propagation of their meridional displacement based on the conservation of vorticity. Here it is crucial that the background zonal flow has vorticity (i.e., flow shear) changing with latitude. It is found that the wave propagates either parallel or anti-parallel to the background flow depending on whether the background vorticity increases or decreases in latitude, and if its latitudinal scale is significantly smaller than the longitudinal wavelength, the phase velocity exceeds the background flow speed. The result suggests that the latitudinal structure of the background flow is crucial for the bead propagation. More specifically, the aforementioned feature (a) implies that the zonal flow associated with eastward propagation is confined in latitude, which may correspond to the preonset approach of mesoscale flows. In contrast, the large-scale ionospheric flow suggested for westward propagation as described in (b) may correspond to the global convection of the conventional growth phase.

Merging Mesoscale Magnetotail Features and Ground B‐Field Perturbation Network Connectivity During Substorm Activity

JGR:Space physics - Sun, 09/08/2024 - 20:45
Abstract

The connection between the magnetosphere and ionosphere is particularly dynamic during substorms. Mesoscale features in the magnetotail are consistent with substorm activity, including magnetic reconnection in the tail, flow channels, and particle injections. Observations of substorm related phenomena can be made using energetic neutral atom (ENA) imagers, in situ satellite measurements, and ground based magnetic field perturbation measurements. Analysis of the 10 October 2014 isolated substorm event is presented. Comparison of the spatial and temporal dynamics of the features seen in equatorial maps generated from ENA data are made with inner magnetosphere in situ measurements and ionospheric features with network analysis of the SuperMAG data. An MHD simulation of the event using OpenGGCM is also compared with the data.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer