Abstract
The Europa Clipper mission will explore Europa and investigate its habitability utilizing a set of five remote-sensing instruments that cover the electromagnetic spectrum from thermal infrared to ultraviolet wavelength, four in-situ fields and particles instruments, a dual-frequency radar, and a gravity and radio science investigation. Key mission objectives include to produce high-resolution images of Europa’s surface, determine its composition, look for signs of recent or ongoing activity, measure the thickness of the icy shell, search for subsurface lakes, and determine the depth and salinity of Europa’s ocean. The Europa Clipper Mission Plan integrates the above investigations in a way that allows for the simultaneous acquisition of complimentary datasets (i.e., datasets at the regional scale, distributed globally across Europa) utilizing a complex network of flybys while in Jupiter orbit. About 50 flybys of Europa—with closest-approach altitudes varying from several thousand kilometers to as low as 25 kilometers—will be executed over an approximately 4.3-year prime mission. We present an overview of the mission design, which is driven by the complex scientific goals of the mission but also influenced by launch vehicle capabilities, the intense Jovian radiation environment, varying thermal environment, and dependency on precise planet and moon flybys to manage the orbit. We describe the interplanetary and Jovian orbit design, Mission Plan, and Navigation Plan, and forecast performance against mission requirements to date.