Feed aggregator

Ecosystems Disturbance Recovery: What It Was or What It Could Have Been?

GRL - Fri, 08/30/2024 - 12:23
Abstract

The time it takes for an ecosystem to recover from a disturbance is a key to environmental management. Conventionally, recovery is defined as a return to the pre-disturbance state, assuming ecosystem stationarity. However, this view does not account for the impact of external forces like climate change, imposing non-stationarity and trends. Alternatively, the counterfactual approach views recovery as the state the ecosystem would have achieved if the disturbance had not occurred, accounting for external forces. Here, we present a simple method to estimate the counterfactual recovery time. By implementing our method to the greening of the Arctic region, we showed that counterfactual greening recovery is twice as long as conventional recovery over the region. We argue that the well-documented greening of the region acts as an external force, leading to such a large difference. We advocate for embracing the counterfactual definition of recovery, as it aligns with realistic decision-making processes.

Effects of Eccentricity and Horizontal Electric Field on the Characteristics and Outcomes of Binary Collisions of Water Drops

GRL - Fri, 08/30/2024 - 11:39
Abstract

Effects of eccentricity and horizontal electric field (E H) on the binary-collision outcomes of water drops are examined using numerically calculated collision characteristics from previous studies and results of simulation experiment conducted by the authors. For a fixed collision kinetic energy (CKE), filament breakups can occur at all values of eccentricity but events of coalescence decrease, and that of sheet breakup increase with increasing eccentricity in absence of E H. However, as E H increases to ∼300 kVm−1 it opposes the variability of the coalescence and sheet breakup events with eccentricity. When E H exceeds ∼300 kVm−1 the collision outcomes might be determined only by the CKE and E H. The calculated value of coalescence efficiency and total number of fragments after a binary collision decreases with an increase in E H. It is argued that an electric field can significantly modify drop size distribution in thunderclouds and needs to be considered for development of precipitation.

Stratospheric Chlorine Processing After the Unprecedented Hunga Tonga Eruption

GRL - Fri, 08/30/2024 - 10:39
Abstract

Following the Hunga Tonga–Hunga Ha'apai (HTHH) eruption in January 2022, significant reductions in stratospheric hydrochloric acid (HCl) were observed in the Southern Hemisphere mid-latitudes during the latter half of 2022, suggesting potential chlorine activation. The objective of this study is to comprehensively understand the loss of HCl in the aftermath of HTHH. Satellite measurements and a global chemistry-climate model are employed for the analysis. We find strong agreement of 2022 anomalies between the modeled and the measured data. The observed tracer-tracer relations between nitrous oxide (N2O) and HCl indicate a significant role of chemical processing in the observed HCl reduction, especially during the austral winter of 2022. Further examining the roles of chlorine gas-phase and heterogeneous chemistry, we find that heterogeneous chemistry emerges as the primary driver for the chemical loss of HCl, and the reaction between hypobromous acid (HOBr) and HCl on sulfate aerosols is the dominant loss process.

Shallow Creep on the Laohushan Segment of the Haiyuan Fault, Northeastern Tibetan Plateau, Detected With Dense Near‐Field GPS Measurements

GRL - Fri, 08/30/2024 - 10:05
Abstract

While shallow creep along the Haiyuan fault is a key element in estimating earthquake potential, both the creep rate and spatial distribution inferred from InSAR and repeating earthquakes are still controversial. In this study, we resolve two potentially separated creeping patches along the Laohushan fault (LHSF) based on dense near-field GPS measurements of 39 stations. The largest creeping patch, which extends ∼20 km along-strike and ∼9 km down-dip with a slip rate of 4.2 mm/yr, spatially correlates with seismicity, especially repeating earthquakes. The locked segment is capable of producing an earthquake of Mw 7.3 ± 0.1, with moment rate of (1.08 ± 0.39) × 1017 N⋅m/yr, possibly following the cycle since the 1092 M8 event. The lack of GPS measurements in the near-field makes it unclear whether the 8 km section between these two patches is slowly creeping below detection threshold or has relocked due to change in environmental condition.

Weakening of La Niña Impact on Negative Indian Ocean Dipole Under Global Warming

GRL - Fri, 08/30/2024 - 10:05
Abstract

As global warming intensifies, the coupling relationship between negative Indian Ocean Dipole (nIOD) and La Niña has substantially changed. However, the characteristics and mechanisms of these changes are not yet fully understood. Here, we find that the impact of La Niña on nIOD has considerably weakened since 1999, with the frequency of nIOD occurrences during La Niña years plummeting to a mere one-third of the pre-1999 levels. This is primarily attributed to the early onset of Indian summer monsoon and the decrease in La Niña intensity, while the effect of variations in Bjerknes feedback is relatively minor. Model simulations suggest that the influence of La Niña on nIOD will continue to weaken under future global warming through similar mechanisms as in the observations, increasing the complexity of air-sea coupling in the Indian Ocean.

TIMED Doppler Interferometer Measurements of Neutral Winds at the Mesosphere and Lower Thermosphere and Comparison to Meteor Radar Winds

TIMED Doppler Interferometer Measurements of Neutral Winds at the Mesosphere and Lower Thermosphere and Comparison to Meteor Radar Winds
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys. Discuss., https//doi.org/10.5194/angeo-2024-13,2024
Preprint under review for ANGEO (discussion: open, 0 comments)
This study focuses on the TIMED Doppler Interferometer (TIDI)-Meteor Radar(MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI winds measurements and MR winds shows good agreement. A TIDI-MR seasonal comparison and the altitude-latitude dependence for winds is performed. TIDI reproduce the mean circulation well when compared with the MRs and might be useful as a lower boundary for general circulation models.
Categories:

Continent‐Side Uplifted Mantle and Geological Imprints Along a Paleo Rift in the Western East Sea (Sea of Japan)

JGR–Solid Earth - Fri, 08/30/2024 - 07:45
Abstract

We investigate the continent-size lithospheric structures of paleo rift around the central Korean Peninsula using ambient noise tomography and earthquake-based Eikonal tomography based on dense seismic networks. We determine Rayleigh-wave group velocities at periods of 1–15 s from ambient noise tomography and Rayleigh-wave phase velocities at periods of 20–80 s from earthquake-based Eikonal tomography. We determine a 3-D shear-wave velocity model in the lithosphere from the Rayleigh wave velocities. The model exhibits high lateral variations ranging from ∼ ${\sim} $‒9% to ∼ ${\sim} $8%, depending on depth. The shear-wave velocities at shallow depths (≤ ${\le} $2 km) are relatively high in mountain regions and low in coastal and basin regions. Strong velocity contrasts are observed around major earthquake hypocenters at depths of 3–20 km, which may be due to the presence of seismogenic faults. Shear-wave velocities at depths of ∼ ${\sim} $30–40 km are high along the east coast, suggesting uplifted mantle that is responsible for the opening of the East Sea (Sea of Japan). High velocity structures beneath Moho around the coast may suggest solidified underplated magma caused by the paleo rifting. The root of coast-parallel high-mountain range (Taebaek Mountain Range) is bounded by the uplifted mantle, presenting mountain range development in rift flank along paleo-rift axis. Low shear-wave velocities along the coast at depths ≥60 ${\ge} 60$ km may imply elevated temperature beneath the solidified underplated magma. The continent-side paleo rift affects the geological, thermal, and seismological properties around the continental margin at present.

Micronuclear collapse from oxidative damage

Science - Fri, 08/30/2024 - 07:00
Science, Volume 385, Issue 6712, August 2024.

An evaluation of atmospheric absorption models at millimetre and sub-millimetre wavelengths using airborne observations

Atmos. Meas. techniques - Thu, 08/29/2024 - 18:27
An evaluation of atmospheric absorption models at millimetre and sub-millimetre wavelengths using airborne observations
Stuart Fox, Vinia Mattioli, Emma Turner, Alan Vance, Domenico Cimini, and Donatello Gallucci
Atmos. Meas. Tech., 17, 4957–4978, https://doi.org/10.5194/amt-17-4957-2024, 2024
Airborne observations are used to evaluate two models for absorption and emission by atmospheric gases, including water vapour and oxygen, at microwave and sub-millimetre wavelengths. These models are needed for the Ice Cloud Imager (ICI) on the next generation of European polar-orbiting weather satellites, which measures at frequencies up to 664 GHz. Both models can provide a good match to measurements from airborne radiometers and are sufficiently accurate for use with ICI.

AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states

Geoscientific Model Development - Thu, 08/29/2024 - 18:02
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, 2024
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.

Impact of ITCZ width on global climate: ITCZ-MIP

Geoscientific Model Development - Thu, 08/29/2024 - 18:02
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, 2024
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.

Physics-motivated cell-octree adaptive mesh refinement in the Vlasiator 5.3 global hybrid-Vlasov code

Geoscientific Model Development - Thu, 08/29/2024 - 18:02
Physics-motivated cell-octree adaptive mesh refinement in the Vlasiator 5.3 global hybrid-Vlasov code
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, 2024
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.

Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations

Natural Hazards and Earth System Sciences - Thu, 08/29/2024 - 15:13
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations. Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.

An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania

Natural Hazards and Earth System Sciences - Thu, 08/29/2024 - 15:13
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, 2024
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.

Preface: Special Issue on Probing the Open Ocean With the Research Sailing Yacht Eugen Seibold for Climate Geochemistry

JGR–Atmospheres - Thu, 08/29/2024 - 13:09
Abstract

The 72-foot sailing yacht Eugen Seibold is a new research platform for contamination-free sampling of the water column and atmosphere for biological, chemical, and physical properties, and the exchange processes between the two realms. Ultimate goal of the project is a better understanding of the modern and past ocean and climate. Operations started in 2019 in the Northeast Atlantic, and will focus on the Tropical Eastern Pacific from 2023 until 2025. Laboratories for air and seawater analyses are equipped with down-sized and automated state-of-the-art technology for a comprehensive description of the marine carbon system including CO2 concentration in the air and sea surface, pH, macro-, and micro-nutrient concentration (e.g., Fe, Cd), trace metals, and calcareous plankton. Air samples are obtained from ca. 13 m above sea surface and analyzed for particles (incl. black carbon and aerosols) and greenhouse gases. Plankton nets and seawater probes are deployed over the custom-made A-frame at the stern of the boat. Near Real-Time Transfer of underway data via satellite connection allows dynamic expedition planning to maximize gain of information. Data and samples are analyzed in collaboration with the international expert research community. Quality controlled data are published for open access. The entire suite of data facilitates refined proxy calibration of paleoceanographic and paleoclimate archives at high temporal and spatial resolution in relation to seawater and atmospheric parameters.

Geodetic Matched Filter Slow Slip Event Detection Along the Northern Japan Subduction Zones

JGR–Solid Earth - Thu, 08/29/2024 - 12:24
Abstract

We apply a template matching method on GNSS data for stations located in Honshu, Japan, to detect slow slip events associated with the subducting Philippine Sea and Pacific plates during the period from 1997 to 2020. A measure of the minimum detectable moment magnitude is proposed, from which we infer that the method could potentially detect SSEs as small as M w 5.2 on the westernmost part of the Philippine Sea plate and M w 6 on the Pacific plate below Honshu eastern coastline. We find 12 slow slip events on the Philippine Sea plate, among which eight are located on the known Boso slow slip event asperity and the four others are located offshore north-east relative to the Boso SSEs, at the transition with the Pacific plate. We find 9 SSEs on the Pacific plate, mainly on the northern section, offshore Iwate prefecture. A clear gap with no SSEs coincides with the main asperity that broke during the 2011 Tohoku earthquake. Most event locations correlate with low locking areas. We do not find any clear temporal pattern apart from the regular occurrence of the largest Boso SSEs.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer