Feed aggregator

Assessing Climate Forcing From the Sea Surface Temperature‐Surface Heat Flux Relation for SST‐Coupled Oscillatory Variability

GRL - Thu, 06/13/2024 - 05:24
Abstract

The interaction between sea surface temperatures (SST) and surface heat flux (SHF) is vital for atmospheric and oceanic variabilities. This study investigates SST-SHF relationship in the framework of a coupled oscillatory model, extending beyond previous research that predominantly used AR-1 type simple stochastic climate models. In contrast to the AR-1 type model, we reveal distinct features of SST-SHF relationships in the oscillatory model: sign reversals occur in the imaginary part of SST-SHF coherence and the low-pass SST tendency-SHF correlation. However, these sign reversals are absent in the real part of SST-SHF coherence and in the low-pass SST-SHF correlation. We find these features are robust across both the twentieth Century Reanalysis and GFDL SPEAR model for El Niño-Southern Oscillation (ENSO) variability. Furthermore, we develop a new scheme to assess ENSO's climate forcing magnitude and natural frequency. Our findings thus provide novel insights into understanding ENSO dynamics from the perspective of heat flux.

Comparing Influences of Solar Wind, ULF Waves, and Substorms on 20 eV–2 MeV Electron Flux (RBSP) Using ARMAX Models

JGR:Space physics - Thu, 06/13/2024 - 05:23
Abstract

Electron fluxes (20 eV–2 MeV, RBSP-A satellite) show reasonable simple correlation with a variety of parameters (solar wind, IMF, substorms, ultralow frequency (ULF) waves, geomagnetic indices) over L-shells 2–6. Removing correlation-inflating common cycles and trends (using autoregressive and moving average terms in an ARMAX analysis) results in a 10 times reduction in apparent association between drivers and electron flux, although many are still statistically significant (p < 0.05). Corrected influences are highest in the 20 eV–1 keV and 1–2 MeV electrons, more modest in the midrange (2–40 keV). Solar wind velocity and pressure (but not number density), IMF magnitude (with lower influence of B z ), SME (a substorm measure), a ULF wave index, and geomagnetic indices Kp and SymH all show statistically significant associations with electron flux in the corrected individual ARMAX analyses. We postulate that only pressure, ULF waves, and substorms are direct drivers of electron flux and compare their influences in a combined analysis. SME is the strongest influence of these three, mainly in the eV and MeV electrons. ULF is most influential on the MeV electrons. Pressure shows a smaller positive influence and some indication of either magnetopause shadowing or simply compression on the eV electrons. While strictly predictive models may improve forecasting ability by including indirect driver and proxy parameters, and while these models may be made more parsimonious by choosing not to explicitly model time series behavior, our present analyses include time series variables in order to draw valid conclusions about the physical influences of exogenous parameters.

Surfing Acceleration of Radiation Belt Relativistic Electrons Induced by the Propagation of Interplanetary Shock

GRL - Thu, 06/13/2024 - 05:19
Abstract

Interplanetary shocks (IPS) can initiate prompt acceleration of relativistic electrons in the Earth's radiation belt, which is related to the generation and propagation of impulsive electric field (IEF). We investigate the effect of IEF on accelerating radiation belt electrons in the 6 September 2017 IPS event. A “surfing” effect of electrons with respect to the electric field, referring to electrons that drift together with the tailward-propagating IEF in the duskside, is investigated in this study. Our results show that the maximum increase of electron differential flux is at 3.4 MeV by a factor of 2.2, corresponding to a drift velocity of 531 km/s, which is more consistent with the IPS propagating speed of 621 km/s rather than the fast-mode speed of 1,074 km/s. We suggest that the effect of IPS propagation is important for radiation belt dynamics, and we highlight the potential importance of the parameter of IPS propagation speed.

Multi‐Instrument Analysis of the Formation and Segmentation of Tongue of Ionization Into Two Consecutive Polar Cap Patches

JGR:Space physics - Thu, 06/13/2024 - 05:13
Abstract

This paper investigates the formation and segmentation of the tongue of ionization into two consecutive polar cap patches using multi-instrument observations from 27 February 2014. We provide insights into how the interplanetary magnetic field (IMF) variations influence the formation and segmentation of these patches. Our findings reveal that the entry of dayside dense plasma into the polar cap is predominantly driven by the modified convection near the cusp region, which is controlled by the transition of IMF By or the sudden drop of IMF Bz. Furthermore, we observe a rapid north-westward plasma flow within the patch segmentation region, accompanied by equatorward-expanded and enhanced convection near the cusp region. This fast-moving flow, approximately 1.5 km/s, is characterized by low density and high electron temperature and shows a signature of a Subauroral Polarization Stream. This suggests that the fast-westward flow, in conjunction with the expansion and contraction of ionospheric convection, plays a crucial role in the segmentation of polar cap patches from the dayside plasma reservoir. This study provides a comprehensive observation of the evolution of polar cap patches, thereby advancing our understanding of the dynamic mechanisms governing patch formation and segmentation.

Honeycomb‐Like Magnetosheath Structure Formed by Jets: Three‐Dimensional Global Hybrid Simulations

GRL - Thu, 06/13/2024 - 05:09
Abstract

Magnetosheath jets with enhanced dynamic pressure are common in the Earth's magnetosheath. They can impact the magnetopause, causing deformation of the magnetopause. Here we investigate the 3-D structure of magnetosheath jets using a realistic-scale, 3-D global hybrid simulation. The magnetosheath has an overall honeycomb-like 3-D structure, where the magnetosheath jets with increased dynamic pressure surround the regions of decreased dynamic pressure resembling honeycomb cells. The magnetosheath jets downstream of the bow shock region with θ Bn  ≲ 20° (where θ Bn is the angle between the upstream magnetic field and the shock normal) propagate approximately along the normal direction of the magnetopause, while those downstream of the bow shock region with θ Bn  ≳ 20° propagate almost tangential to the magnetopause. Therefore, some magnetosheath jets formed at the quasi-parallel shock region can propagate to the magnetosheath downstream of the quasi-perpendicular shock region.

Prompt Disappearance of Magnetospheric Chorus Waves Caused by High‐Speed Magnetosheath Jets

JGR:Space physics - Thu, 06/13/2024 - 04:53
Abstract

Magnetosheath high-speed jets (HSJs), localized impulses of dynamic pressure, are attracting growing attention due to their geoeffectiveness. However, how HSJs modulate chorus waves in the magnetosphere still remains unclear. Utilizing combined observations of the Time History of Events and Macroscale Interactions during Substorms satellites A and E, we report, for the first time, the prompt disappearance of the magnetospheric chorus waves caused by a HSJ. Such wave disappearance is directly due to the flux drop of energetic electrons (∼10–100 keV), leading to the cessation of wave generation, which is supported by the linear theoretical analysis. We propose that the flux drop results from the local indentation of magnetopause after the HSJ impact, where two new smaller magnetic mirrors are formed off the equator and part of electrons are then expelled by the mirror force. The HSJs should be an important factor in modulating chorus waves because of their high occurrence rate.

Synergistic approach of frozen hydrometeor retrievals: considerations on radiative transfer and model uncertainties in a simulated framework

Atmos. Meas. techniques - Wed, 06/12/2024 - 18:37
Synergistic approach of frozen hydrometeor retrievals: considerations on radiative transfer and model uncertainties in a simulated framework
Ethel Villeneuve, Philippe Chambon, and Nadia Fourrié
Atmos. Meas. Tech., 17, 3567–3582, https://doi.org/10.5194/amt-17-3567-2024, 2024
In cloudy situations, infrared and microwave observations are complementary, with infrared being sensitive to cloud tops and microwave sensitive to precipitation. However, infrared satellite observations are underused. This study aims to quantify if the inconsistencies in the modelling of clouds prevent the use of cloudy infrared observations in the process of weather forecasting. It shows that the synergistic use of infrared and microwave observations is beneficial, despite inconsistencies.

Are Forecasts of the Tropical Cyclone Radius of Maximum Wind Skillful?

GRL - Wed, 06/12/2024 - 17:44
Abstract

The radius of maximum wind (RMW) defines the location of the maximum winds in a tropical cyclone and is critical to understanding intensity change as well as hazard impacts. A comparison between the Hurricane Analysis and Forecast System (HAFS) models and two statistical models based off the National Hurricane Center official forecast is conducted relative to a new baseline climatology to better understand whether models have skill in forecasting the RMW of North Atlantic tropical cyclones. On average, the HAFS models are less skillful than the climatology and persistence baseline and two statistically derived RMW estimates. The performance of the HAFS models is dependent on intensity with better skill for stronger tropical cyclones compared to weaker tropical cyclones. To further improve guidance of tropical cyclone hazards, more work needs to be done to improve forecasts of tropical cyclone structure.

Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0

Geoscientific Model Development - Wed, 06/12/2024 - 16:07
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024, 2024
We develop the interactive Model for Air Pollution and Land Ecosystems (iMAPLE). The model considers the full coupling between carbon and water cycles, dynamic fire emissions, wetland methane emissions, biogenic volatile organic compound emissions, and trait-based ozone vegetation damage. Evaluations show that iMAPLE is a useful tool for the study of the interactions among climate, chemistry, and ecosystems.

StraitFlux – precise computations of water strait fluxes on various modeling grids

Geoscientific Model Development - Wed, 06/12/2024 - 16:07
StraitFlux – precise computations of water strait fluxes on various modeling grids
Susanna Winkelbauer, Michael Mayer, and Leopold Haimberger
Geosci. Model Dev., 17, 4603–4620, https://doi.org/10.5194/gmd-17-4603-2024, 2024
Oceanic transports shape the global climate, but the evaluation and validation of this key quantity based on reanalysis and model data are complicated by the distortion of the used modelling grids and the large number of different grid types. We present two new methods that allow the calculation of oceanic fluxes of volume, heat, salinity, and ice through almost arbitrary sections for various models and reanalyses that are independent of the used modelling grids.

Detrital Input Sustains Diatom Production off a Glaciated Arctic Coast

GRL - Wed, 06/12/2024 - 15:44
Abstract

In the Arctic and subarctic oceans, the relatively low supply of silicon (compared to other nutrients) can make it limiting for the growth of diatoms, a fundamental building block of the oceanic food web. Glaciers release large quantities of dissolved silicon and dissolvable solid amorphous silica phases into high-latitude estuaries (fjords), but the role of these glacially-derived silica phases in sustaining diatom growth in the coastal and open-water sectors remains unknown. Here we show how stable and radiogenic silicon isotopes can be used together to address this question, using southwest Greenland as a case study. This study finds enhanced levels of detrital (i.e., mineral) amorphous silica, likely glacially-sourced, sustaining a large portion of diatom growth observed off the coast, revealing how the phytoplankton community can function during high-meltwater periods.

Atmospheric pCO2 Response to Stimulated Organic Carbon Export: Sensitivity Patterns and Timescales

GRL - Wed, 06/12/2024 - 15:35
Abstract

The ocean's organic carbon export is a key control on atmospheric pCO2 and stimulating this export could potentially mitigate climate change. We use a data-constrained model to calculate the sensitivity of atmospheric pCO2 to local changes in export using an adjoint approach. A perpetual enhancement of the biological pump's export by 0.1 PgC/yr could achieve a roughly 1% reduction in pCO2 at average sensitivity. The sensitivity varies roughly 5-fold across different ocean regions and is proportional to the difference between the mean sequestration time τ seq of regenerated carbon and the response time τ pre of performed carbon, which is the reduction in the preformed carbon inventory per unit increase in local export production. Air-sea CO2 disequilibrium modulates the geographic pattern of τ pre, causing particularly high sensitivities (2–3 times the global mean) in the Antarctic Divergence region of the Southern Ocean.

Improving All‐Sky Simulations of Typhoon Cloud/Rain Band Structures of NOAA‐20 CrIS Window Channel Observations

JGR–Atmospheres - Wed, 06/12/2024 - 14:25
Abstract

The Cross-track Infrared Sounder (CrIS) observations (O) contributed greatly to numerical weather prediction. Further contribution depends on the success of all-sky data assimilation, which requires a method to produce realistic cloud/rain band structures from background fields (i.e., 6-hr forecasts), and to remove large biases of all-sky simulation of brightness temperature (TB) in the presence of clouds. In this study, CrIS all-sky simulations of brightness temperatures at an arbitrarily selected window channel within Typhoon Hinnamnor (2022) are investigated. The 3-km Weather Research and Forecasting model with three microphysics schemes were used to produce 6-hr background forecasts (B). The O − B statistic deviate greatly from Gaussian distribution with large biases in either water clouds, or thin ice clouds, or thick ice clouds within Typhoon Hinnamnor. By developing a linear regression function of three all-sky simulations of TB from 6-hr forecasts with three microphysics schemes, the O − B statistics approximate a Gaussian normal distribution in water clouds, thin ice clouds and thick ice clouds. Taking the regression function that is established by a training data set to combine 6-hr background forecasts at later times, the cloud/rain band structures compared much more favorably with CrIS observations than those from an individual microphysic. Furthermore, the regression coefficients derived from Typhoon Hinnamnor (2022) also work for Typhoon Khanun (2023). The work aims to quantify and remove biases in background fields of TB and generating realistic typhoon cloud/rain band structures in background fields will allow a better description of center position, intensity and size to improve typhoon forecasts.

Humidity Effects on the Positive Leader Steps in Laboratory Long Spark Discharges

JGR–Atmospheres - Wed, 06/12/2024 - 14:14
Abstract

The stepwise development of positive lightning leaders is still not well understood. A recent laboratory study indicated, at high absolute humidity, positive leaders can do steps due to the merging of a separate luminous structure and the primary leader channel, similar to the steps of negative leaders. The humidity may play a key role in the formation of positive leader steps, however, the humidity effect on the positive leader steps has never been explored. In this paper, we examine numerous positive long spark discharges at different humidity levels with the synchronized discharge current and high-speed camera frames recording the evolution of leader channel. The positive leader propagation manners at different humidity levels are compared both morphologically and electrically. The effect of humidity on steps is further analyzed statistically. We found that the positive leader steps characterized by steep-rise current pulse and abrupt channel elongation, which may be led by separate luminous structures, only appear under the condition that high absolute humidity is above a certain threshold. As the ambient humidity increases, these positive leader steps occur more frequently.

Measured and Modeled Trends of Seven Tropospheric Pollutants in the High Arctic From 1999 to 2022

JGR–Atmospheres - Wed, 06/12/2024 - 13:49
Abstract

The long-term trends and seasonality of many tropospheric pollutants are not well characterized in the high Arctic due to a dearth of trace-gas measurements in this remote region. In this study, the inter- and intra-annual variabilities of carbon monoxide (CO), acetylene (C2H2), ethane (C2H6), methanol (CH3OH), formaldehyde (H2CO), formic acid (HCOOH), and peroxyacetyl nitrate (PAN) in the high Arctic region were derived from the total column time-series of ground-based Fourier transform infrared (FTIR) measurements at Eureka, Nunavut (80.05°N, 86.42°W, 2006–2020) and Thule, Greenland (76.53°N, 68.74°W, 1999–2022). Consistent seasonal cycles were observed in the FTIR measurements at both sites for all species. Negative trends were observed for CO, C2H2, and CH3OH at both sites, and for HCOOH at Eureka. Positive trends were detected for C2H6 and H2CO at both sites, and for PAN at Eureka. Additionally, a 19-year simulation was performed using the novel GEOS-Chem High Performance model v14.1.1 for the period of 2003–2021. The model was able to reproduce the observed seasonality of all gases, but all species showed negative biases relative to observations, and CH3OH was found to have a particularly large bias of approximately −70% relative to the FTIR measurements. The GEOS-Chem modeled trends broadly agreed with observations for all species except C2H6, H2CO, and PAN, which were found to have opposite trends in the model. For some species, the measurement-model differences are suspected to be the result of errors or underestimations in the emissions inventories used in the simulation.

Aerosol‐Cloud Interactions From Aviation Soot Emissions

JGR–Atmospheres - Wed, 06/12/2024 - 13:34
Abstract

Current models estimate global aviation contributes approximately 5% to the total anthropogenic climate forcing, with aerosol-cloud interactions having the greatest effect. However, radiative forcing estimates from aviation aerosol-cloud interactions remain undetermined. There is an expected significant increase in aircraft emissions with aviation demand expected to rise by over 4% per year. Soot may play an important role in the ice nucleation of aircraft-induced cirrus formation due to a high emission rate, but the ice nucleating properties are poorly constrained. Understanding the microphysical processes leading to atmospheric ice crystal formation is crucial for the reliable parameterization of aerosol-cloud interactions in climate models due to their impact on precipitation and cloud radiative properties. Ice nucleation of aircraft-emitted soot is potentially affected by particle morphology with condensation of supercooled water occurring in pores followed by ice nucleation. However, soot has heterogeneous properties and undergoes atmospheric aging and oxidation that could change surface properties and contribute to complex ice nucleation processes. This review synthesizes current knowledge of ice nucleation catalyzed by aviation in the cirrus regime and its effects on global radiative forcing. Further research is required to determine the ice nucleation and microphysical processes of cirrus cloud formation from aviation emissions in both controlled laboratory and field investigations to inform models for more accurate climate predictions and to provide efficient mitigation strategies.

An Index Description of the General Characteristics of Thermospheric Density Based on the Two‐Line‐Element Data Sets and the Spectral Whitening Method

JGR:Space physics - Wed, 06/12/2024 - 13:18
Abstract

The thermospheric density and its variations are crucial to aerospace activities as well as space weather research and operation. However, due to the difficulties in observing the thermosphere, there has been a lack of effective descriptions for the general characteristics of thermospheric density. In this paper, the Two-Line-Element data sets (TLEs) from multi-target low Earth orbit satellites are used to derive a proxy of the daily average atmospheric density in the thermospheric shell located in the vicinity of LEOs' orbital altitude. It captures the overall characteristics of the thermosphere and exhibits good correlations (∼0.9) with modeled and observed thermospheric density. By applying the spectral whitening method to this proxy, a new index JsT ${J}_{s}^{T}$ is derived to describe non-periodic perturbation of the density where the specific satellite passed by. The fact that the JsT ${J}_{s}^{T}$ obtained from different satellites within the same thermospheric shell presents significant consistency to each other means that the new index is a good indicator for the overall feature of the variations of thermospheric density, and it is possible to define a unified regional index JrT ${J}_{r}^{T}$ to describe density disturbances for the thermospheric shell where these satellites fly through. Moreover, the JrT ${J}_{r}^{T}$ at different altitudes also present good consistency suggesting the possibility of defining a global index JpT ${J}_{p}^{T}$, capable of describing the density variation of the entire thermosphere.

Deep‐Learning‐Based Prediction of the Tetragonal → Cubic Transition in Davemaoite

GRL - Wed, 06/12/2024 - 11:44
Abstract

Davemaoite, that is, CaSiO3 perovskite (CaPv), is the third most abundant phase in the lower mantle and exhibits a tetragonal-cubic phase transition at high pressures and temperatures. The phase boundary in CaPv has recently been proposed to be close to the cold slab adiabat and cause mid-mantle seismic wave speed anomalies (Thomson et al., 2019, https://doi.org/10.1038/s41586-019-1483-x). This study utilized accurate deep-learning-based simulations and thermodynamic integration techniques to compute free energies at temperatures ranging from 300 to 3,000 K and pressures up to 130 GPa. Our results indicate that CaPv exhibits a single cubic phase throughout lower-mantle conditions. This suggests that the phase diagram proposed by Thomson et al. requires revision, and mid-mantle seismic anomalies are likely attributable to other mechanisms.

A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories

Natural Hazards and Earth System Sciences - Wed, 06/12/2024 - 11:12
A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024, 2024
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard changes should be assessed using additional factors describing geomorphological configurations, metocean event types (storms, cyclones, long swells, and tsunamis), and the marine environment (e.g., coral reef state and sea ice extent). The assessment completed here, at regional scale including the coasts of mainland and overseas France, highlights significant differences in hazard changes.

Conversion relationships between Modified Mercalli Intensity and Peak Ground Acceleration for historical shallow crustal earthquakes in Mexico

Natural Hazards and Earth System Sciences - Wed, 06/12/2024 - 11:12
Conversion relationships between Modified Mercalli Intensity and Peak Ground Acceleration for historical shallow crustal earthquakes in Mexico
Quetzalcoatl Rodríguez-Pérez and F. Ramón Zúñiga
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-92,2024
Preprint under review for NHESS (discussion: open, 1 comment)
Seismic intensity reflects earthquake damage, although this parameter is often subjective. On the other hand, peak acceleration values are a direct measure of earthquake effects. Seismic intensity was used to describe historical earthquakes, and its use is rare today. For this reason, it is important to have a relationship between these parameters of strong movements in order to predict the acceleration of historical earthquakes.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer