Feed aggregator

To Rotate or to Link? The Connection Between the Red Sea and Gulf of Aden Rifts in Central Afar

GRL - Fri, 06/14/2024 - 16:03
Abstract

Central Afar is shaped by the interaction between the Red Sea (RS) and Gulf of Aden (GoA) rifts. While there have been several studies conducted in the region, we know surprisingly little about the mechanism of connection between these two rift branches. Here we use high-resolution 3D lithospheric scale geodynamic modeling to capture the evolution of linkage between the RS and GoA rifts in central Afar. Our results demonstrate that the two rifts initially overlap and interact across a broad zone of faulting and vertical axis block rotation. However, through time, rift overlap is abandoned in favor of direct linkage which generates a series of localized en-echelon basins. The present-day direct linkage between the two rifts is supported by geodetic observations. Our study reconciles previously proposed models for the RS and GoA rift connection by considering spatial and temporal evolution of the rifts.

Investigating Catchment‐Scale Daily Snow Depths of CMIP6 in Canada

GRL - Fri, 06/14/2024 - 15:20
Abstract

Accurate modeling of snow depth (SD) processes is critical for understanding global energy balance changes, affecting climate change mitigation strategies. This study evaluates the Coupled Model Intercomparison Project Phase 6 (CMIP6) model performance in simulating daily SD across Canada. We assess CMIP6 outputs against observed data, focusing on daily SD averages, snow cover durations, and rates of accumulation and depletion, alongside annual SD peaks for 11 major Canadian catchments. Our findings reveal that CMIP6 simulations generally overestimate daily SD by 57.7% and extend snow cover duration by 30.5 days on average. While three models (CESM2, UKESM1-0-LL and MIROC6) notably align with observed annual SD peaks, simulation biases suggest the need for enhanced model parameterization to accurately capture snow physics, particularly in regions with permanent snow cover and complex terrains. This analysis underscores the necessity of refining CMIP6 simulations and incorporating detailed geographical data for better SD predictions.

Plant Morphology Impacts Bedload Sediment Transport

GRL - Fri, 06/14/2024 - 15:09
Abstract

Bedload sediment transport plays an important role in the evolution of rivers, marshes and deltas. In these aquatic environments, vegetation is widespread, and plant species have unique morphology. However, the impact of real plant morphology on flow and sediment transport has not been quantified. This study used model plants with real plant morphology, based on the aquatic species Phragmites australis, Acorus calamus and Typha latifolia. The frontal area of these species increases away from the bed, which leads to higher near-bed velocity than would be predicted from depth-average frontal area. A plant morphology coefficient was defined to quantify the impact of vertically-varied plant frontal area. Laboratory experiments confirmed that the plant morphology coefficient improved the prediction of near-bed velocity, near-bed turbulent kinetic energy and bedload transport rate in canopies with realistic morphology. Plant morphology can alter transport rates by up to an order of magnitude, relative to the assumption of uniform morphology.

A Novel Emergent Constraint Approach for Refining Regional Climate Model Projections of Peak Flow Timing

GRL - Fri, 06/14/2024 - 14:59
Abstract

Global climate models (GCMs) are unable to produce detailed runoff conditions at the basin scale. Assumptions are commonly made that dynamical downscaling can resolve this issue. However, given the large magnitude of the biases in downscaled GCMs, it is unclear whether such projections are credible. Here, we use an ensemble of dynamically downscaled GCMs to evaluate this question in the Sierra-Cascade mountain range of the western US. Future projections across this region are characterized by earlier seasonal shifts in peak flow, but with substantial inter-model uncertainty (−25 ± 34.75 days, 95% confidence interval (CI)). We apply the emergent constraint (EC) method for the first time to dynamically downscaled projections, leading to a 39% (−28.25 ± 20.75 days, 95% CI) uncertainty reduction in future peak flow timing. While the constrained results can differ from bias corrected projections, the EC is based on GCM biases in historical peak flow timing and has a strong physical underpinning.

Sinuous Aurora at Mars: A Link to the Tail Current Sheet?

JGR:Space physics - Fri, 06/14/2024 - 12:54
Abstract

We examine the newly discovered phenomena of sinuous aurora on the nightside of Mars, using images of 130.4 and 135.6 nm oxygen emission measured by the Emirates Mars Mission EMUS ultraviolet spectrograph, and upstream measurements from the MAVEN and Mars Express spacecraft. They are detected in ∼3% of observations, totaling 73 clear detections. These emissions are narrow, elongated (1,000–6,000 km), cross Mars' UV terminator, and are oriented generally toward the anti-solar point, clustering into north, south, east, and west-oriented groups. Diverse morphologies are observed, though some spatial features, such as broad curves, may in some cases be due to temporal aliasing of aurora motion as each image is built up over 15–20 min. Sinuous aurora form away from Mars' strongest crustal magnetic fields and can be interrupted by moderate crustal fields. Sinuous aurora occurrence increases strongly with solar wind pressure, though brightness shows only a weak positive dependence on pressure. Interplanetary magnetic field (IMF) clock angle affects their occurrence and orientation: sinuous aurora show a broad range of orientations centered on the solar wind convection electric field (E conv) direction and forming in the +E conv hemisphere, although with moderate clockwise and counterclockwise average “twists” for westward and eastward IMF, respectively. From these features we infer a link between sinuous aurora and electron energization in Mars' magnetotail current sheet, where field geometry on the +E conv side of the sheet is more organized and symmetric. Determination of specific triggering conditions for sinuous aurora requires further investigation.

Investigating the Hot Zone Developed Under Short‐Circuiting Conditions and the Coupled Magnetosphere‐Ionosphere (M‐I) System for the Subauroral Arc's Inner‐Magnetosphere Generation Environment

JGR:Space physics - Fri, 06/14/2024 - 12:44
Abstract

Based on correlated magnetosphere-ionosphere (M-I) conjugate observations of seven events, we study the hot zone developed under short-circuiting conditions leading (a) to the development of outward Subauroral Polarization Streams (SAPS) or Subauroral Ion Drifts (SAID) electric (E) field and (b) to the various subauroral arcs' absence or presence. Results show (a) the close relations of the hot zone earthward extent and peak ion temperature (Ti) to the magnitude of outward SAPS/SAID E field and (b) the hot zone's high Ti (∼11,000 eV) developed under enhanced plasma turbulence that was (c) generated by the amplified narrow hot ion and electron plasma density peaks, (d) sometimes in plasmaspheric plumes, and that was (e) sometimes further enhanced by the strong auroral kilometric radiation (AKR) waves (f) leading to the development of enhanced SAPS/SAID E field. From these (a–f) findings we conclude for the seven events investigated that (a) the hot zone's development under short-circuiting conditions was regulated by the kinetic energy of mesoscale plasma flows and that (b) the hot zone created the favorable inner-magnetosphere conditions during short circuiting (c) for stable auroral red (SAR) arc development by plasma turbulence, which is the common source of heat/suprathermal particles accelerated downward, and (d) in the plasmaspheric plume scenario for SAR arc and Strong Thermal Emission Velocity Enhancement (STEVE) arc development by the plumes' enhanced cold plasma populations leading to strong shear flows and thus shear-flow instabilities well-known associated with the SAPS/SAR arc and recently regarded as a potential driver mechanism of the STEVE arc.

Disk Images of Neutral Temperature From the Global‐Scale Observations of the Limb and Disk (GOLD) Mission

JGR:Space physics - Fri, 06/14/2024 - 12:38
Abstract

Observations of far-ultraviolet (FUV) dayglow by the Global-scale Observations of Limb and Disk (GOLD) mission provide an opportunity for quantifying the global-scale response of the thermosphere to solar extreme-ultraviolet variability and geomagnetic activity. Relative temperature changes can be measured by monitoring changes in the rotational structure observed in molecular nitrogen Lyman-Birge-Hopfield (LBH) band emissions. We present a new technique for deriving effective neutral temperatures from GOLD FUV observations using optimal estimation fits to spectra containing LBH band emissions. We provide an overview of the theoretical basis for the GOLD Level 2 TDISK algorithm. Effects on derived effective neutral temperatures from instrument artifacts and particle background are reviewed. We also discuss GOLD Level 1C DAY and Level 2 TDISK data products and present representative examples of each. We show that effective neutral temperatures vary with local time, exhibit a strong dependence on season and solar zenith angle, and correlate strongly with geomagnetic and solar activity. Finally, we present results from a preliminary data product validation that show good agreement with coincident GOLD exospheric temperatures and predictions from a global reference atmospheric model.

Plate‐Scale Imaging of Eastern US Reveals Ancient and Ongoing Continental Deformation

GRL - Fri, 06/14/2024 - 12:34
Abstract

Eastern North America was constructed over several Wilson cycles, culminating in the breakup of Pangea. Previous seismological imaging lacked the resolution to depict precisely how ancient tectonic boundaries manifest throughout the lithosphere, how continental breakup modified the plate, or how ongoing mantle dynamics shapes the continental margin. We present a high-resolution, plate-scale seismic tomography model of the eastern US by combining an unprecedented suite of complementary data sets in a Bayesian framework. These data provide detailed resolution from crust to asthenosphere, identifying the base of the lithosphere and mid-lithospheric discontinuities. The plate thins in steps that align with ancient orogens. The lithospheric step at the Appalachian front is associated with cells of mantle upwellings, likely edge-driven convection, that erode the base of the plate and shape modern Appalachian topography. Low-velocity structures in the lithospheric-mantle align with the Grenville front and may be remnants of Rodinia assembly.

Deep‐Learning‐Based Phase Picking for Volcano‐Tectonic and Long‐Period Earthquakes

GRL - Fri, 06/14/2024 - 12:30
Abstract

The application of deep-learning-based seismic phase pickers has surged in recent years. However, the efficacy of these models when applied to monitoring volcano seismicity has yet to be fully evaluated. Here, we first compile a data set of seismic waveforms from various volcanoes globally. We then show that the performances of two widely used deep-learning pickers deteriorate systematically as the earthquakes' frequency content decreases. Therefore, the performances are especially poor for long-period earthquakes often associated with fluid/magma movement. Subsequently, we train new models which perform significantly better, including when tested on two data sets where no training data were used: volcanic earthquakes along the Cascadia subduction zone and tectonic low-frequency earthquakes along the Nankai Trough. Our model/workflow can be applied to improve monitoring of volcano seismicity globally while our compiled data set can be used to benchmark future methods for characterizing volcano seismicity, especially long-period earthquakes which are difficult to monitor.

MAGE Model Simulation of the Pre‐Reversal Enhancement and Comparison With ICON and Jicamarca ISR Observations

JGR:Space physics - Fri, 06/14/2024 - 12:28
Abstract

Using the latest coupled geospace model Multiscale Atmosphere-Geospace Environment (MAGE) and observations from Jicamarca Incoherent scatter radar (ISR) and ICON ion velocity meter (IVM) instrument, we examine the pre-reversal enhancement (PRE) during geomagnetic quiet time period. The MAGE shows comparable PRE to both the Jicamarca ISR and ICON observations. There appears to be a discrepancy between the Jicamarca ISR and ICON IVM with the later showed PRE about two times larger (∼40 m/s). This is the first time that MAGE is used to simulate the PRE. The results show that the MAGE can simulate the PRE well and are mostly consistent with observations.

Multi‐Decadal Skill Variability in Predicting the Spatial Patterns of ENSO Events

GRL - Fri, 06/14/2024 - 12:10
Abstract

Seasonal hindcasts have previously been demonstrated to show multi-decadal variability in skill across the twentieth century in indices describing El-Niño Southern Oscillation (ENSO), which drives global seasonal predictability. Here, we analyze the skill of predicting ENSO events' magnitude and spatial pattern, in the CSF-20C coupled seasonal hindcasts in 1901–2010. We find minima in the skill of predicting the first (in 1930–1950) and second (in 1940–1960) principal components of sea-surface temperature (SST) in the tropical Pacific. This minimum is also present in the spatial correlation of SSTs, in 1930–1960. The skill reduction is explained by lower ENSO magnitude and variance in 1930–1960, as well as decreased SST persistence. The SST skill minima project onto surface winds, leading to worse predictions in coupled hindcasts compared to hindcasts using prescribed SSTs. Questions remain about the offset between the first and second principal components' skill minima, and how the skill minima impact the extra-tropics.

Magnetic Domain States and Critical Sizes in the Titanomagnetite Series

JGR–Solid Earth - Fri, 06/14/2024 - 11:55
Abstract

The minerals carrying the magnetic remanence in geological samples are commonly a solid solution series of iron-titanium spinels known as titanomagnetites. Despite the range of possible compositions within this series, micromagnetic studies that characterize the magnetic domain structures present in these minerals have typically focused on magnetite. No studies systematically comparing the domain-states present in titanomagnetites have been undertaken since the discovery of the single vortex (SV) structure and the advent of modern micromagnetism. The magnetic properties of the titanomagnetite series are known to vary strongly with composition, which may influence the domain states present in these minerals, and therefore the magnetic stability of the samples bearing them. We present results from micromagnetic simulations of titanomagnetite ellipsoids of varying shape and composition to find the size ranges of the single domain (SD) and SV structures. These size ranges overlap, allowing for regions where the SD and SV structures are both available. These regions are of interest as they may lead to magnetic instability and “partial thermal remanent magnetization (pTRM) tails” in paleointensity experiments. We find that although this SD + SV zone occupies a narrow range of sizes for equidimensional magnetite, it is widest for intermediate (TM30-40) titanomagnetite compositions, and increases for both oblate and prolate particles, with some compositions and sizes having an SD + SV zone up to 100s of nm wide. Our results help to explain the prevalence of pTRM tail-like behavior in paleointensity experiments. They also highlight regions of particles with unusual domain states to target for further investigation into the definitive mechanism behind paleointensity failure.

Topographical Effects on Volcano Deformation Signal Intensity: Implications for GPS Network Configuration

GRL - Fri, 06/14/2024 - 11:54
Abstract

Volcano GPS networks can capture vital information during volcanic unrest to aid with hazard assessment and eruption forecasting, but can be hindered by their discrete point locations and possibly miss key spatial information. We show how numerical models can reveal controls on spatial deformation signal intensity compared against GPS network design. Using the GPS network at Soufrière Hills Volcano (SHV), Montserrat, and a range of models, we explore expected surface deformation patterns. Peak horizontal deformation is located offshore, highlighting the difficulties with geodetic monitoring on small ocean-island volcanoes. Onshore areas where the deformation signal is expected to be high are also identified. At SHV, topography plays a greater role in altering the relative distribution of surface displacement patterns than subsurface heterogeneity. Our method, which can be adapted for other volcanoes, highlights spatial areas that can be targeted for effective GPS station placement to help improve deformation monitoring efficiency.

A Review of the Migration of Hydrogen From the Planetary to Basin Scale

JGR–Solid Earth - Fri, 06/14/2024 - 11:45
Abstract

The occurrence of natural hydrogen and its sources have been reviewed extensively in the literature over the last few years, with current research across both academia and industry focused on assessing the feasibility of utilizing natural hydrogen as an energy resource. However, gaps remain in our understanding of the mechanisms responsible for the large-scale transport of hydrogen and migration through the deep and shallow Earth and within geological basins. Due to the unique chemical and physical properties of hydrogen, the timescales of migration within different areas of Earth vary from billions to thousands of years. Within the shallow Earth, diffusive and advective transport mechanisms are dependent on a wide range of parameters including geological structure, microbial activity, and subsurface environmental factors. Hydrogen migration through different media may occur from geological timescales to days and hours. We review the nature and timescale of hydrogen migration from the planetary to basin-scale, and within both the deep and shallow Earth. We explore the role of planetary accretion in setting the hydrogen budget of the lower mantle, discuss conceptual frameworks for primordial or deep mantle hydrogen migration to the Earth's surface and evaluate the literature on the lower mantle's potential role in setting the hydrogen budget of rocks delivered from the deep Earth. We also review the mechanisms and timescales of hydrogen within diffusive and advective, fossil versus generative and within biologically moderated systems within the shallow Earth. Finally, we summarize timescales of hydrogen migration through different regions within sedimentary basins.

New Paleomagnetic Results From the Late Mesoproterozoic Luanshigou Formation, Shennongjia Group in South China and Their Implications for the Pre‐Grenvillian Connections Between South China Blocks and Southwestern Laurentia

JGR–Solid Earth - Fri, 06/14/2024 - 11:41
Abstract

The identification of the Grenvillian-age ophiolite suites in the Yangtze block in recent years suggested that the northern Yangtze subblock (NYB) and the southern Yangtze subblock (SYB) were once separated by an ocean in late Mesoproterozoic. Although some paleogeographic models advocated the Pre-Grenvillian connections between the south China blocks and Laurentia, none of them has been paleomagnetically tested. Here we report the new paleomagnetic results obtained from the ∼1,270 Ma purplish-red muddy dolomite beds of the Luanshigou Formation, Shennongjia Group, NYB, providing new constraints for reconstructing the paleogeographic positions of the south China blocks in late Mesoproterozoic. A total of 447 samples underwent stepwise thermal demagnetization. Two components were identified. The low-temperature component is interpreted as the recent viscous remnant magnetization. The high-temperature component was obtained from 64 samples below 580°C and from 177 samples below 690°C, directed northeast-up or southwest-down, antipodally, positioning the paleomagnetic pole at 18.5°S, 74.4°E (dm/dp = 2.5/1.6°). Rock magnetic results demonstrate that the magnetic carriers in purplish-red dolomite and pale-pink dolomite are predominated by hematite and magnetite, respectively. The data quality is supported by an inverse baked contact test, a B-class reversal test, and the paleomagnetic pole is distinct from any younger poles of the region. Based on the paleomagnetic results, aided by geological evidence, we propose a reconstruction in which the NYB was juxtaposed to southwestern Laurentia in the late Mesoproterozoic and suggest that the late Mesoproterozoic Miaowan-Shimian ophiolite zone in the Yangtze block was likely an extension of the Grenville belt of Laurentia.

The 2023 Mw 6.8 Morocco Earthquake: A Lower Crust Event Triggered by Mantle Upwelling?

GRL - Fri, 06/14/2024 - 11:23
Abstract

A M6.8 earthquake struck the High Atlas Mountains in Morocco on 8 September 2023, ending a 63-year seismic silence. We herein attempt to clarify the seismogenic fault and explore the underlying mechanism for this seismic event based on multiple data sets. Utilizing probabilistic Bayesian inversion on interferometric radar data, we determine a seismogenic fault plane centered at a depth of 26 km, striking 251° and dipping 72°, closely aligned with the Tizi n’Test fault system. Given a hypocenter at the Moho depth, the joint inversion of radar and teleseismic data reveals that the rupture concentrates between depths of 12 and 36 km, offsetting the Mohorovičić discontinuity (Moho) at ∼32 km. Considering a strong link between magma activity and failure in lower crust, we propose that the triggering of the earthquake possibly was mantle upwelling that also supports the high topography.

Dissolved Oxygen Recovery in the Oxygen Minimum Zone of the Arabian Sea in Recent Decade as Observed by BGC‐Argo Floats

GRL - Fri, 06/14/2024 - 10:34
Abstract

The Arabian Sea (AS) hosts the world's thickest and most intense oxygen minimum zone (OMZ), and previous studies have documented a dramatic decline of dissolved oxygen (DO) in the northeastern AS in recent decades. In this study, using the recently released data from Biogeochemical-Argo floats, we found a surprising trend of recovery in deoxygenation within the core region of the OMZ in the AS (ASOMZ) since 2013. The average DO concentration increased by approximately threefold, from ∼0.63 μM in 2013 to ∼1.68 μM in 2022, and the thickness of the ASOMZ decreased by 13%. We find that the weakening of Oman upwelling resulting from the weakening of the summer monsoon is the main driver of oxygenation in the ASOMZ. In addition, the reduction of primary production linked to warming-driven stratification reinforces deoxygenation recovery at depth.

Assessing the Impact of Climate Change on Atmospheric Rivers: A Modeling Perspective

JGR–Atmospheres - Fri, 06/14/2024 - 10:15
Abstract

Atmospheric rivers (ARs) play a crucial role in the poleward transport of water vapor, and the AR-associated precipitation is a critical component of global water supplies, making it critical that we understand how ARs may change in the future. To approach this issue, integrations of the NASA Goddard Institute for Space Studies global climate model ModelE version 2.1 (GISSE2.1) are employed. Multiple configurations of the model simulating different climates are analyzed: (a) the last-glacial maximum; (b) present day; (c) the end of the 21st century. The thermodynamic and dynamic components of changes to AR frequency are analyzed using a decomposition method. This method utilizes differences in distinct AR seasonal climatology frequencies derived from various vertically integrated water vapor transport (IVT) thresholds to resolve AR frequency into its components. Global mean state changes in poleward AR frequency for different climates are dominated by precipitable water vapor (PWV) changes. A set of idealized cold and warm climates in which present day sea surface temperatures are uniformly changed are considered for a targeted analysis of the south Pacific Ocean basin. For this analysis, frequency and distribution of AR events in the model runs are analyzed by comparing them to changes in the jet stream as well as the Eulerian storm tracks and low-level baroclinicity. Latitudinal shifts in the ARs in the south Pacific Ocean basin using our integrations are not as tightly coupled to these two storm-related climatological metrics in the midlatitudes but fare better on the poleward side of the storm tracks.

Did Short‐Term Preseismic Crustal Deformation Precede the 2011 Great Tohoku‐Oki Earthquake? An Examination of Stacked Tilt Records

GRL - Fri, 06/14/2024 - 10:15
Abstract

The detection of preslip, occurring hours to days before a large earthquake, using geodetic measurements has been a major focus in earthquake prediction research. A recent study claims to have detected a preseismic signal interpreted as accelerating slip near the hypocenter of the 2011 great Tohoku-oki earthquake, starting approximately 2 hr before the mainshock. This claim is based on a stacking procedure using GNSS (Global Navigation Satellite System) data. However, a follow-up study demonstrated that the signal disappeared when specific GNSS noise was corrected. Here we utilize tiltmeter records, independent on GNSS, to check whether the claimed preseismic signal is detected using a similar stacking procedure. Our results show no acceleration-like deformation from 2 hr before the mainshock. This indicates that no precursory slip exceeded the noise level of the tilt data, and if any preslip occurred, it was less than 5.0 × 1018 Nm in seismic moment.

Sources of Southern Hemisphere Marine Aerosols: Insights From Carbonaceous Fraction Concentration and Stable Carbon Isotope Analysis

JGR–Atmospheres - Fri, 06/14/2024 - 10:00
Abstract

Marine carbonaceous aerosols, originating from marine and continental sources, are significant global aerosol components. The understanding of marine carbonaceous aerosols is currently limited, especially in the Southern Hemisphere. Furthermore, there is an ongoing debate regarding the contributions of marine fresh and ancient carbon to marine aerosols. To address these gaps, we conducted an extensive investigation utilizing a long-term data set of aerosol samples collected during six Antarctic cruises (28°N–78°S) from 2013 to 2020. Our analysis revealed an average organic carbon (OC) concentration of 1.29 ± 1.15 μg/m3 and an element carbon (EC) concentration of 0.13 ± 0.18 μg/m3 in the samples. These concentrations varied within a range spanning from background marine samples to those impacted by substantial continental transport. Fossil fuel combustion remained the primary source of continental influence in the marine environment, as evidenced by the OC/EC ratio. The δ13CTC value for all samples range from −22.3‰ to −28.4‰, with a mean value of −26.3 ‰. Using a three-endmember isotopic source model, we find that continental carbonaceous aerosols make substantial contributions in the Eastern Indian Ocean (81 ± 4%), while their prevalence is lower in the Southern Ocean (SO) (44 ± 20%). In contrast to mid-latitudes, primary marine aerosol of the SO exhibits a significantly higher contribution from the fresh carbon pool (52 ± 19%). Furthermore, our study suggests that SO sea ice may play a potential role in driving emissions from the fresh carbon pool. These findings contribute to a comprehensive understanding of the effects of carbonaceous aerosols on climate change and the ocean-atmosphere carbon cycle.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer