Abstract
This study investigates the responses of the urban atmospheric thermal environment to two distinct heat waves in Hefei, China, and explores potential changes associated with future urban expansion. During the Event 1, characterized by clear and dry conditions, the western Pacific subtropical high limits water vapor influx, resulting in a significant cooling effect in rural area due to higher surface latent heat flux. The urban heat island (UHI) intensity, calculated using surface temperature and 2-m temperature, reaches 5.2°C and 1.7°C during the Event 1, respectively. Although Event 2, characterized by cloudy and humid conditions, exhibits weaker UHI and urban dry island effects, it remains highly unfavorable for human comfort. During distinct heat waves, the vertical extent of the warming effect induced by future urban expansion varies, which can be attributed to environmental factors, such as atmospheric stability and near-surface wind speed.
Abstract
Anomalous tropical longwave cloud-radiative heating of the atmosphere is generated when convective precipitation occurs, which plays an important role in the dynamics of tropical disturbances. Defining the observed cloud-radiative feedback as the reduction of top-of-atmosphere longwave radiative cooling per unit precipitation, the feedback magnitudes are sensitive to the observed precipitation data set used when comparing two versions of Global Precipitation Climatology Project, version 1.3 (GPCPv1.3) and the newer version 3.2 (GPCPv3.2). GPCPv3.2 contains larger magnitudes and variance of daily precipitation, which yields a weaker cloud-radiative feedback in tropical disturbances at all frequencies and zonal wavenumbers. Weaker cloud-radiative feedbacks occur in GPCPv3.2 at shorter zonal lengths on intraseasonal timescales, which implies a preferential growth at planetary scales for the Madden-Julian oscillation. Phase relationships between precipitation, radiative heating, and other thermodynamic variables in eastward-propagating gravity waves also change with the updated GPCPv3.2.
Abstract
This study uses precipitation oxygen isotopes (δ18Op) to examine key dynamics that deliver moisture to the southern slope of central Himalayas over different seasons. Results show that the majority of pre-monsoon δ18Op values are relatively high and controlled by the westerlies and local moisture. However, some abnormally low δ18Op values coincide with higher precipitation amounts during the pre-monsoon season due to moisture driven northwards from the Bay of Bengal and Arabian Sea to central Himalayas by anomalous circulations (quasi-anticyclone, anticyclone, or/and westerlies trough). The size and location of the quasi-anticyclone also influences the magnitude of the δ18Op decrease. In comparison, the monsoon δ18Op values are lower due to the combined effects of the Indian summer monsoon and convection. Our findings indicate that researchers need to consider the signals of abnormally low δ18Op values during the pre-monsoon season when attempting to interpret ice core and tree-ring records from central Himalayas.
Abstract
We have analyzed Electrostatic Electron Cyclotron Harmonic (ECH) waves observed using interferometry observation mode performed by the Arase satellite to estimate low-energy electron temperatures. Interferometry can be used to calculate velocities, but the Arase satellite can only perform interferometry observations in a one-dimensional direction. We proposed a method to estimate the wave vector of the observed ECH waves from the observed electric fields and calculated the phase velocity for each frequency. We determined the particle parameters from the particle detector and the upper hybrid resonance and estimated the unknown low-energy electron temperature from the agreement between the observed ECH dispersion relation and the theoretical dispersion curves. We performed our analysis for six events and found that the low-energy electron temperature in the observed region is on the order of 1 eV.
Abstract
Relativistic electrons in the radiation belts can be transported as a result of wave-particle interactions (WPI) with ultra-low frequency (ULF) waves. Such WPI are often assumed to be diffusive, parametric models for the radial diffusion coefficient often being used to assess the rates of radial transport. However, these WPI transition from initially coherent interactions to the diffusive regime over a finite time, this time depending on the ULF wave power spectral density, and local resonance conditions. Further, in the real system on the timescales of a single storm, interactions with finite discrete modes may be more realistic. Here, we use a particle-tracing model to simulate the dynamics of outer radiation belt electrons in the presence of a finite number of discrete frequency modes. We characterize the point of the onset of diffusion as a transition from separate discrete interactions in terms of wave parameters by using the “two-thirds” overlap criterion (Lichtenberg & Lieberman, 1992, https://doi.org/10.1007/978-1-4757-2184-3), a comparison between the distance between, and the widths of, the electron's primary resonant islands in phase space. Further, we find the particle decorrelation time in our model system with typical parameters to be on the timescale of hours, which only afterward can the system be modeled by one-dimensional radial diffusion. Direct comparison of particle transport rates in our model with previous analytic diffusion coefficient formulations show good agreement at times beyond the decorrelation time. These results are critical for determining the time periods and conditions under which ULF wave radial diffusion theory can be applied.
Abstract
The storm-enhanced density (SED) is a large-scale midlatitude ionospheric electron density enhancement in the local afternoon sector, which exhibits substantial spatial gradients and thus can impose detrimental effects on modern navigation and communication systems, causing potential space weather hazards. This study has identified a comprehensive list of 49 SED events over the continental US and adjacent regions, by examining strong geomagnetic storms occurring between 2000 and 2023. The ground-based Global Navigation Satellite System (GNSS) total electron content and data from a new TEC-based ionospheric data assimilation system were used to analyze the characteristics of SED. For each derived SED events, we have quantified its morphology by employing a Gaussian function to parameterize key characteristics of the SED, such as the plume intensity, central longitude, and half-width. A statistical analysis of SEDs was conducted for the first time to characterize their climatological features. We found that the SED distribution exhibits a higher peak intensity and a narrower width as geomagnetic activity strengthens. The peak intensity of SED has maximum values around the equinoxes in their seasonal distribution. Additionally, we observed a solar cycle dependence in the SED distribution, with more events occurring during the solar maximum and declining phases compared to the solar minimum. SED plumes exhibit a sub-corotation feature with respect to the Earth, characterized by a westward drift speed between 50 and 400 m/s and a duration of 3–10 hr. These information advanced the current understanding of the spatial-temporal variation of SED characteristics.
It could have been much worse: spatial counterfactuals of the July 2021 flood in the Ahr valley, Germany
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-97,2024
Preprint under review for NHESS (discussion: open, 0 comments)
The July 2021 flood in Central Europe was one of the deadliest floods in Europe in the past decades and the most expensive flood in Germany. In this paper we show that the hydrological impact of this event in the Ahr valley could have been even worse if the rainfall footprint trajectory was only slightly different. The presented methodology of spatial counterfactuals generates plausible unprecedented events and helps better prepare for future extreme floods.
The Avalanche Terrain Exposure Scale (ATES) v.2
Grant Statham and Cam Campbell
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-89,2024
Preprint under review for NHESS (discussion: open, 0 comments)
The Avalanche Terrain Exposure Scale (ATES) is an avalanche terrain rating system used for terrain assessment and risk communication in public and workplace avalanche safety practices. This paper introduces ATES v.2, an update to the system that expands the original scale from three levels to five by including Class 0 – Non-Avalanche Terrain, and Class 4 – Extreme Terrain. The updated models for assessment and communication are described in detail, along with methods for the application of ATES.
Predicting Deep-Seated Landslide Displacements in Mountains through the Integration of Convolutional Neural Networks and Age of Exploration-Inspired Optimizer
Jui-Sheng Chou, Hoang-Minh Nguyen, Huy-Phuong Phan, and Kuo-Lung Wang
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-86,2024
Preprint under review for NHESS (discussion: open, 0 comments)
This study enhances landslide prediction using advanced machine learning, including new algorithms inspired by historical explorations. The research accurately forecasts landslide movements by analyzing eight years of data from Taiwan's Lushan Mountain, improving early warnings and potentially saving lives and infrastructure. This integration marks a significant advancement in environmental risk management.
EvalHyd v0.1.2: a polyglot tool for the evaluation of deterministic and probabilistic streamflow predictions
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, 2024
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
A general comprehensive evaluation method for cross-scale precipitation forecasts
Bing Zhang, Mingjian Zeng, Anning Huang, Zhengkun Qin, Couhua Liu, Wenru Shi, Xin Li, Kefeng Zhu, Chunlei Gu, and Jialing Zhou
Geosci. Model Dev., 17, 4579–4601, https://doi.org/10.5194/gmd-17-4579-2024, 2024
By directly analyzing the proximity of precipitation forecasts and observations, a precipitation accuracy score (PAS) method was constructed. This method does not utilize a traditional contingency-table-based classification verification; however, it can replace the threat score (TS), equitable threat score (ETS), and other skill score methods, and it can be used to calculate the accuracy of numerical models or quantitative precipitation forecasts.
sedInterFoam 1.0: a three-phase numerical model for sediment transport applications with free surfaces
Antoine Mathieu, Yeulwoo Kim, Tian-Jian Hsu, Cyrille Bonamy, and Julien Chauchat
Geosci. Model Dev. Discuss., https//doi.org/10.5194/gmd-2024-16,2024
Preprint under review for GMD (discussion: open, 0 comments)
Most of the tools available to model sediment transport do not account for complex physical mechanisms such as surface wave driven processes. In this study, a new model sedInterFoam allows to reproduce numerically complex configurations to investigate coastal sediment transport applications dominated by surface waves and gain insight into the complex physical processes associated with breaking waves and morphodynamics.
Impact of horizontal resolution and model time step on European precipitation extremes in the OpenIFS 43r3 atmosphere model
Yingxue Liu, Joakim Kjellsson, Abhishek Savita, and Wonsun Park
Geosci. Model Dev. Discuss., https//doi.org/10.5194/gmd-2024-66,2024
Preprint under review for GMD (discussion: open, 0 comments)
The impact of horizontal resolution and model time step on extreme precipitation over Europe is examined in OpenIFS. We find that the biases are reduced with increasing horizontal resolution, but not with reducing time step. The large-scale precipitation is more sensitive to the horizontal resolution, however, the convective precipitation is more sensitive to the model time step. Increasing horizontal resolution is more important for extreme precipitation simulation that reducing time step.
The first microwave and submillimetre closure study using particle models of oriented ice hydrometeors to simulate polarimetric measurements of ice clouds
Karina McCusker, Anthony J. Baran, Chris Westbrook, Stuart Fox, Patrick Eriksson, Richard Cotton, Julien Delanoë, and Florian Ewald
Atmos. Meas. Tech., 17, 3533–3552, https://doi.org/10.5194/amt-17-3533-2024, 2024
Polarised radiative transfer simulations are performed using an atmospheric model based on in situ measurements. These are compared to large polarisation measurements to explore whether such measurements can provide information on cloud ice, e.g. particle shape and orientation. We find that using oriented particle models with shapes based on imagery generally allows for accurate simulations. However, results are sensitive to shape assumptions such as the choice of single crystals or aggregates.
High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024, 2024
This study introduces and evaluates a new ocean surface wind speed product from the NASA Langley Research Center (LARC) airborne High-Spectral-Resolution Lidar – Generation 2 (HSRL-2) during the NASA ACTIVATE mission. We show that HSRL-2 surface wind speed data are accurate when compared to ground-truth dropsonde measurements. Therefore, the HSRL-2 instrument is able obtain accurate, high-resolution surface wind speed data in airborne field campaigns.
On the importance of middle-atmosphere observations on ionospheric dynamics using WACCM-X and SAMI3
Fabrizio Sassi, Angeline G. Burrell, Sarah E. McDonald, Jennifer L. Tate, and John P. McCormack
Ann. Geophys., 42, 255–269, https://doi.org/10.5194/angeo-42-255-2024, 2024
This study shows how middle-atmospheric data (starting at 40 km) affect day-to-day ionospheric variability. We do this by using lower atmospheric measurements that include and exclude the middle atmosphere in a coupled ionosphere–thermosphere model. Comparing the two simulations reveals differences in two thermosphere–ionosphere coupling mechanisms. Additionally, comparison against observations showed that including the middle-atmospheric data improved the resulting ionosphere.
Abstract
Medium-scale traveling ionospheric disturbances (MSTIDs) can significantly alter a region's ionosphere features, severely impacting the performance and stability of services such as shortwave communication and navigation positioning. By utilizing the total electron content (TEC) data from BeiDou geostationary satellites for 2022–2023, this study investigated the characteristics of MSTIDs over Hong Kong concerning local time and seasons. A total of 622 MSTID events were observed, classified into three types: daytime (10:00–17:00 LT), twilight (17:00–22:00 LT), and nighttime (22:00–02:00 LT). The occurrence rates and excitation mechanisms of the three types of MSTIDs were analyzed. Daytime and twilight MSTIDs had higher occurrence rates during winter, while nighttime MSTIDs had higher occurrence rates in summer and were even absent during winter. Overall, daytime MSTIDs were the most common, followed by twilight MSTIDs, while nighttime MSTIDs were less frequent. The propagation directions of MSTIDs exhibited anisotropy but showed some clustering patterns. Daytime MSTIDs exhibited high directional diversity during summer, but more concentrated in winter. Nighttime MSTIDs, on the other hand, were more focused during summer. It is worth noting that twilight MSTIDs exhibit similar climatological characteristics to daytime MSTIDs, which have not been observed in previous studies. It is suggested that daytime MSTIDs in the Hong Kong region are likely primarily generated by atmospheric gravity waves (AGWs) from low-latitude regions, while nighttime MSTIDs are likely caused by Perkins instability. Twilight MSTIDs may originate from AGWs at the solar terminator, as well as daytime MSTIDs propagated from mid-latitude areas.
Abstract
Fault regions inferred to be slowly slipping are interpreted to accommodate much of tectonic plate motion aseismically and potentially serve as barriers to earthquake rupture. Here, we build on prior work using simulations of earthquake sequences with enhanced dynamic fault weakening to show how fault regions that exhibit decades of steady creep or transient slow-slip events can be driven to dynamically fail by incoming earthquake ruptures. Following substantial earthquake slip, such regions can be under-stressed and locked for centuries prior to slowly slipping again. Our simulations illustrate that slow fault slip indicates that a region is sufficiently loaded to be failing about its quasi-static strength. Hence, if a fault region is susceptible to failing dynamically, then observations of slow slip could serve as an indication that the region is critically stressed and ready to fail in a future earthquake, posing a qualitatively different interpretation of slow slip for seismic hazard.
Abstract
Applying machine learning to continuous acoustic emissions, signals previously deemed noise, from laboratory faults and slowly slipping subduction-zone faults, demonstrates hidden signatures are emitted that describe physical details, including fault displacement and friction. However, no evidence currently exists to demonstrate that similar hidden signals occur during seismogenic stick-slip on earthquake faults—the damaging earthquakes of most societal interest. We show that continuous seismic emissions emitted during the 2018 multi-month caldera collapse sequence at the Kı̄lauea volcano in Hawai'i contain hidden signatures characterizing the earthquake cycle. Multi-spectral data features extracted from 30 s intervals of the continuous seismic emission are used to train a gradient boosted tree regression model to predict the GNSS-derived contemporaneous surface displacement and time-to-failure of the upcoming collapse event. This striking result suggests that at least some faults emit such signals and provide a potential path to characterizing the instantaneous and future behavior of earthquake faults.
Abstract
The El Niño-Southern Oscillation causes anomalous atmospheric circulation, temperature and precipitation across southern polar latitudes, but the influence of Central and Eastern Pacific El Niño events on Antarctic surface mass balance and snow accumulation has not yet been assessed. Here, we use reanalysis and reanalysis-forced regional climate model output and find that Central Pacific El Niño results in significantly increased snow accumulation in the western Ross Sea sector and significantly decreased snow accumulation in the Amundsen Sea sector. Eastern Pacific El Niño is associated with similar but weaker patterns, with some regional exceptions. In some areas, like Dronning Maud Land, or the Wilkes Subglacial Basin, the effect of El Niño on snow accumulation changes from increased to reduced accumulation depending on the type of El Niño. Our results show that projecting El Niño types is important for constraining future changes in Antarctic surface mass balance.