Feed aggregator

Fine Shallow Structures of Binchuan Basin Inverted From Receiver Functions and Implications for Basin Evolution

JGR–Solid Earth - Tue, 09/10/2024 - 17:29
Abstract

The understanding of the velocity structure and basement morphology within the basin is crucial for seismic hazard mitigation and the study of basin evolution. To explore the intricate structure of the Binchuan Basin in western Yunnan, China, we deployed a linear dense array in the northern region of the Binchuan Basin, with inter-station distance ranging from 50 to 100 m. We propose a novel receiver function processing workflow. Initially, we extracted coherent receiver functions based on the dense array, followed by a inversion of basement morphology, S-wave velocities, and sedimentary layer's average V p /V s ratio jointly with frequency-dependent teleseismic apparent shear velocity and receiver function waveforms. The results show that S-wave velocity anomalies correspond to the unconsolidated sediments. The thickness of the sedimentary layer ranges from ∼0.5 to ∼0.75 km. The basement morphology suggests the basin is controlled by normal faults. Additionally, intra-basin faults displayed higher fault displacement to length ratios (∼0.27) than most isolated normal faults (10−3–10−1), which may result from accumulated fault displacement due to interactions between fault segments. These results emphasize the significant role of N–S trending intra-basin faults in basin evolution, suggesting that micro-block rotations and transitional movements within the Northwestern Yunnan Rift Zone are primary mechanisms shaping the Binchuan Basin. We further proposed a multi-stage model for the evolution of the Binchuan Basin. The robustness testing validates that the proposed processing flow is an effective approach to comprehensively image the basin velocity structure and the basement morphology.

Using Satellite Observations of Lightning and Precipitation to Diagnose the Behavior of Deep Convection in Tropical Cyclones Traversing the Midlatitudes

JGR–Atmospheres - Tue, 09/10/2024 - 17:25
Abstract

This study uses a unique combination of geostationary and low-Earth orbiting satellite-based lightning and precipitation observations, respectively, to examine the evolution of deep convection during the tropical cyclone (TC) lifecycle. The study spans the 2018–2021 Atlantic Basin hurricane seasons and is unique as it provides the first known analysis of total lightning (intra-cloud and cloud-to-ground) observed in TCs through their extratropical transition and post-tropical cyclone (PTC) phases. We consider the TC lifecycle stage, geographic location (e.g., land, coast, and ocean), shear strength, and quadrant relative to the storm motion and environmental shear vectors. Total lightning maxima are found in the forward right quadrant relative to storm motion and downshear of the TC center, consistent with previous studies using mainly cloud-to-ground lightning. Increasing environmental shear focuses the lightning maxima to the downshear right quadrant with respect to the shear vector in tropical storm phases. Vertical profiles of radar reflectivity from the Global Precipitation Measurement mission show that super-electrically active convective precipitation features (>75 flashes) within the PTC phase of TCs have deeper mixed phase depths and higher reflectivity at −10°C than other phases, indicating the presence of more intense convection. Differences in the net convective behavior observed throughout TC evolution manifest in both the TC-scale frequency of lightning-producing cells and the intensity variations amongst individual convective cells. The combination of continuous lightning observations and precipitation snapshots improves our understanding of convective-scale processes in TCs, especially in PTC phases, as they traverse the tropics and mid-latitudes.

Revisiting the Excitation of Free Core Nutation

JGR–Solid Earth - Tue, 09/10/2024 - 17:19
Abstract

Earth possesses a Poincaré mode called Free Core Nutation (FCN) due to the misalignment of the rotation axes of the mantle and fluid outer core. FCN is the primary signal in the observations of Celestial Pole Offsets (CPO) and maintained by geophysical mechanisms that are yet to be understood. Earlier studies suggested an origin in Atmospheric Angular Momentum (AAM)—and to a lesser degree Oceanic Angular Momentum (OAM)—but discrepancies between these geophysical excitations and the geodetic (CPO-based) excitation were too large to reach definite conclusions. Here we use newly calculated, 3-hourly AAM and OAM series for the 1994–2022 period, in conjunction with the latest CPO series from the International Earth Rotation and Reference Systems Service (IERS 20 C04 series), to demonstrate a markedly lower power ratio (∼ ${\sim} $4.6) of geophysical over geodetic excitation at the FCN frequency compared to previous works (ratio ∼ ${\sim} $10). Among all excitation sources, the AAM pressure term exhibits the highest coherence (0.56) and correlation (0.48) with the geodetic excitation, whereas the coherence with OAM is smaller by a factor of 3. Similar analyses using existing angular momentum series give comparable, albeit smaller coherence and correlation results. We attribute the relevant AAM pressure term signal to Northern Hemispheric landmasses and further show consistent temporal variations in the amplitude of geophysical and geodetic excitations around the FCN band. Our results thus corroborate evidence for large-scale atmospheric mass redistribution to be the main cause of continuous FCN excitation.

Role of Organic Vapor Precursors in Secondary Organic Aerosol Formation: Concurrent Observations of IVOCs and VOCs in Guangzhou

JGR–Atmospheres - Tue, 09/10/2024 - 17:15
Abstract

Secondary organic aerosol (SOA) formed through the atmospheric transformation of organic vapors constitutes a significant portion of fine particulate matter or PM2.5. While recent laboratory studies underscore the importance of intermediate-volatility organic compounds (IVOCs) as key precursors to SOA, field observations that recognize the role of both volatile organic compounds (VOCs) and IVOCs in SOA formation remain scarce. In this study, we conducted concurrent measurements of VOCs and IVOCs in ambient air at urban and suburban sites in Guangzhou during a PM2.5 pollution event in winter 2021. The results reveal that between 12:00–15:00 local time, the photochemically adjusted initial concentrations of VOCs at both sites were approximately 7 times higher than that of IVOCs. However, the SOA formation potential (SOAFP) of primary hydrocarbon IVOCs exceeded that of VOCs by over 3–4 times. Receptor modeling results further indicated that while ship emissions contributed to less than 10% of the C2–C22 primary hydrocarbons concentration (VOCs + primary carbonaceous IVOCs), they accounted for the most significant source (approximately 40%) of SOA formation. This study highlights the substantial role of IVOCs in SOA formation and emphasizes the importance of future PM2.5 pollution control measures targeting major IVOCs contributors, such as ship emissions in harbor cities.

A Mid‐Crustal Channel of Positive Radial Anisotropy Beneath the Eastern South China Block From F‐J Multimodal Ambient Noise Tomography

GRL - Tue, 09/10/2024 - 16:39
Abstract

We investigated the crustal radial anisotropy in the eastern South China Block (ESCB) with the F-J multimodal ambient noise tomography. Well corresponding to widespread mid-crustal low-velocity zones in the VSV ${V}_{SV}$ model, a pronounced mid-crustal channel of positive radial anisotropy is revealed. In the Cathaysia Block, it may origin from sub-horizontally aligned quartz induced by extension and correspond to the phase transition of α $\alpha $ to β $\beta $ quartz. In other areas, while, it may be relevant to other well-aligned minerals. This positive mid-crustal radial anisotropy channel not only provides the solid evidence for dominative extensional deformation since late Mesozoic, but also may indicate an important detachment surface, contributing much to the early Mesozoic magmatism in the ESCB.

Issue Information

JGR–Atmospheres - Tue, 09/10/2024 - 15:58

No abstract is available for this article.

Inferring the Speed of Sound and Wind in the Nighttime Martian Boundary Layer From Impact‐Generated Infrasound

GRL - Tue, 09/10/2024 - 15:45
Abstract

The properties of the first kilometers of the Martian atmospheric Planetary Boundary Layer have until now been measured by only a few instruments and probes. InSight offers an opportunity to investigate this region through seismoacoustics. On six occasions, its seismometers recorded short low-frequency waveforms, with clear dispersion between 0.4 and 4 Hz. These signals are the air-to-ground coupling of impact-generated infrasound, which propagated in an low-altitude atmospheric waveguide. Their group velocity depends on the structure of effective sound speed in the boundary layer. Here, we conduct a Bayesian inversion of effective sound speed up to 2,000 m altitude using the group velocity measured for events S0981c, S0986c and S1034a. The inverted effective sound speed profiles are in good agreement with estimates provided by the Mars Climate Database. Differences between inverted and modeled profiles can be attributed to a local wind variation in the impact→station direction, of amplitude smaller than 2 m/s.

The Effect of Nitrogen on the Dihedral Angle Between Fe−Ni Melt and Ringwoodite: Implications for the Nitrogen Deficit in the Bulk Silicate Earth

GRL - Tue, 09/10/2024 - 15:36
Abstract

Nitrogen (N) is extremely depleted in the bulk silicate Earth (BSE). However, whether the silicate magma ocean was as N-poor as the present-day BSE is unknown. We performed multi-anvil experiments at 20 GPa and 1,673−2,073 K to determine the dihedral angle of Fe−Ni−N alloy melt in ringwoodite matrix to investigate whether percolation of Fe-rich alloy melt in the solid mantle can explain N depletion in the BSE. The dihedral angles ranged from 112° to 137°, surpassing the wetting boundary. Our experiments suggest that N removal from the mantle by percolation of Fe-rich alloy melt to the Earth's core is unlikely. Therefore, besides N loss to space during planetesimal and planetary differentiation, as well as its segregation into the Earth core, the stranded Fe-rich metal in the deep mantle could be a hidden N reservoir, contributing to the anomalous depletion of N in the observable BSE.

The Influence of Large‐Scale Spatial Warming on Jet Stream Extreme Waviness on an Aquaplanet

GRL - Tue, 09/10/2024 - 14:39
Abstract

The effect of modified equator-to-pole temperature gradients on the jet stream by low-level polar warming and upper-level tropical warming is not fully understood. We perform aquaplanet simulations to quantify the impact of different sea surface temperature distributions on jet stream strength, large wave amplitudes and extreme waviness. The responses to warming in the waviness metrics Sinuosity Index and Local Wave Activity are sensitive to the latitude range over which they are calculated. Therefore, we use a latitude range that accurately represents the position of the jet. The uniform warming scenario strengthens the jet and reduces large wave amplitudes. Reductions in meridional temperature gradients lead to weakened mid-latitudinal jet strength and show significant decreases in large wave amplitudes and jet stream waviness. These findings contradict the mechanism that weakened jet streams increase wave amplitudes and extreme jet stream waviness. We conclude that weakened jet streams do not necessarily become wavier.

A Systematic Review of Meta‐Surface Based Antennas for Thz Applications

Radio Science - Tue, 09/10/2024 - 12:48
Abstract

The growing demand for advanced wireless communication, high-resolution imaging, and innovative medical applications in the Terahertz (THz) frequency range has driven remarkable developments in meta-surface-based antennas. This comprehensive review delves into the cutting-edge advancements, novel designs, and practical applications of meta-surfaces in the THz spectrum. The review begins by exploring the materials employed in meta-surfaces and their crucial role in achieving efficient THz operation. It delves into the realm of polarization diversity, revealing innovative approaches to harnessing the potential of meta-surfaces for polarization control and conversion. A key area of focus is beam-steering technology, with a thorough investigation into beam-steering techniques that have significant implications for enhancing wireless communication, high-resolution imaging, and the internet of things. The paper highlights the potential of these techniques in addressing real-world challenges and advancing THz technology. Furthermore, this review provides an in-depth examination of the innovative antenna designs tailored for THz applications, shedding light on their characteristics and benefits. It also explores the exciting possibilities of THz technology within the medical field, including precise bio sensing and cancer cell detection.

Issue Information

GRL - Tue, 09/10/2024 - 12:38

No abstract is available for this article.

Issue Information

Radio Science - Tue, 09/10/2024 - 06:08

No abstract is available for this article.

Data Assimilation of Ion Drift Measurements for Estimation of Ionospheric Plasma Drivers

Space Weather - Tue, 09/10/2024 - 04:18
Abstract

During geomagnetic storms, the capabilities of current climate models in predicting ionospheric behavior are notably limited. A data assimilation tool, Estimating Model Parameters Reverse Engineering (EMPIRE), implements a Kalman filter to ingest electric density rate correcting the background electric potential and neutral wind. For the baseline setup, or case (1), EMPIRE ingests electron density global map output from the Ionospheric Data Assimilation 4-Dimensional (IDA4D) algorithm. In this work, a new augmentation method is evaluated in which ion drift measurements are also assimilated into EMPIRE. The ion drift measurements used in the new augmentation method are obtained from Super Dual Auroral Radar Network (SuperDARN) sites in the mid-to-high latitude region of the northern hemisphere. Cases (2) and (3) are set up for evaluating the impacts from ingesting different types of observations: SuperDARN fit and grid data, respectively. Six independent data sources are used as validation data sets to compare outcomes with or without ingesting ion drifts. One is the vector ion velocities derived from the Millstone Hill Incoherent Scatter Radar (MHISR) and a second is the vertical drift from Arecibo site. The other four are SuperDARN ion velocity grid data from Saskatoon, Kapuskasing, Christmas Valley West, and Hokkaido East. Results show improvements in performance at mid-latitudes by augmenting electron density rates with 3D spatially distributed line-of-sight ion drift measurements, with negligible improvements to low and high latitude estimations. The lack of improvement at high-latitudes is attributed to the increase in EMPIRE ion drift error poleward of 60° magnetic.

Auroral Bead Propagation: Explanation Based on the Conservation of Vorticity

JGR:Space physics - Sun, 09/08/2024 - 20:55
Abstract

The beading of auroral arcs often takes place at substorm onset. It is known that auroral beads propagate more often eastward than westward at several km/s, which is difficult to explain by existing models. We investigate this issue observationally and theoretically. First, based on previous research and additional statistical analysis, we suggest that (a) auroral beads often propagate eastward in the presence of westward background convection, and (b) background ionospheric convection may be better represented by large-scale convection for westward propagation, and by meso-scale convection for eastward propagation. Then we model auroral beads as vortices of ionospheric flow, and consider the longitudinal propagation of their meridional displacement based on the conservation of vorticity. Here it is crucial that the background zonal flow has vorticity (i.e., flow shear) changing with latitude. It is found that the wave propagates either parallel or anti-parallel to the background flow depending on whether the background vorticity increases or decreases in latitude, and if its latitudinal scale is significantly smaller than the longitudinal wavelength, the phase velocity exceeds the background flow speed. The result suggests that the latitudinal structure of the background flow is crucial for the bead propagation. More specifically, the aforementioned feature (a) implies that the zonal flow associated with eastward propagation is confined in latitude, which may correspond to the preonset approach of mesoscale flows. In contrast, the large-scale ionospheric flow suggested for westward propagation as described in (b) may correspond to the global convection of the conventional growth phase.

Merging Mesoscale Magnetotail Features and Ground B‐Field Perturbation Network Connectivity During Substorm Activity

JGR:Space physics - Sun, 09/08/2024 - 20:45
Abstract

The connection between the magnetosphere and ionosphere is particularly dynamic during substorms. Mesoscale features in the magnetotail are consistent with substorm activity, including magnetic reconnection in the tail, flow channels, and particle injections. Observations of substorm related phenomena can be made using energetic neutral atom (ENA) imagers, in situ satellite measurements, and ground based magnetic field perturbation measurements. Analysis of the 10 October 2014 isolated substorm event is presented. Comparison of the spatial and temporal dynamics of the features seen in equatorial maps generated from ENA data are made with inner magnetosphere in situ measurements and ionospheric features with network analysis of the SuperMAG data. An MHD simulation of the event using OpenGGCM is also compared with the data.

Local Empirical Modeling of NmF2 Using Ionosonde Observations and the FISM2 Solar EUV Model

JGR:Space physics - Fri, 09/06/2024 - 05:35
Abstract

Local empirical models of the F2 layer peak electron density (NmF2) are developed for 43 low- middle latitude ionosonde stations using auto-scaled data from Lowell GIRO data center and manually scaled data from World Data Center for Ionosphere and Space Weather. Data coverage at these stations ranges from a few years to up to 6 decades. Flare Irradiance Spectral Model index version 2 (FISM2) and ap3 index are used to parametrize the solar extreme ultraviolet (EUV) flux and geomagnetic activity dependence of NmF2. Learning curves suggest that approximately 8 years of data coverage is required to constrain the solar activity dependence of NmF2. Output of local models altogether captures well known anomalies of the F2 ionospheric layer. Performance metrics demonstrate that the model parametrized using FISM2 has better accuracy than a similarly parametrized model with F10.7, as well as than the IRI-2020 model. Skill score metrics indicate that the FISM2 based model outperforms F10.7 model at all solar activity levels. The improved accuracy of model with FISM2 over F10.7 is due to better representation of solar rotation by FISM2, and due to its performance at solar extremum. Application of singular spectrum analysis to model output reveals that solar rotation contributes to about 2%–3% of the variance in NmF2 data and FISM2 based model, while F10.7 based models overestimate the strength of solar rotation to be at 4%–7%. At solar extremum, both F10.7-based model and IRI-2020 tend to overestimate the NmF2 while FISM2 provides the most accurate prediction out of three.

A Statistical Survey of E‐Region Anomalous Electron Heating Using Poker Flat Incoherent Scatter Radar Observations

JGR:Space physics - Fri, 09/06/2024 - 05:19
Abstract

This work presents an algorithm for automatic detection of anomalous electron heating (AEH) events in the auroral E-region ionosphere using data from the Poker Flat Incoherent Scatter Radar (PFISR). The algorithm considers both E-region electron temperature and magnetically conjugate electric field measurements. Application of this algorithm to 14 years of PFISR data spanning 2010 through 2023 detected 505 AEH events. Measured electron temperatures increase linearly with plasma drift speeds. Statistical trends of AEH occurrence as a function of space weather indices (AE and F10.7) demonstrate correlations with the solar cycle and geomagnetic activity levels. The magnetic local time occurrence rates show preferences for dusk and dawn with most events in the dusk sector. Observed AEH events tend to appear in regions of relatively low electron density and do not appear inside intense auroral arcs with high electron density. Furthermore, AEH detection requires a higher electric field than predicted by the threshold for a positive growth rate of the Farley-Buneman instability (FBI), according to linear fluid theory. The implications of these findings for kinetic theories of FBI and AEH are discussed.

Evidence of Plasma Mixing at the Earth's Magnetopause Due To Kelvin Helmholtz Vortices

JGR:Space physics - Fri, 09/06/2024 - 05:05
Abstract

Kelvin Helmholtz Instabilities (KHI) result from interactions between the shocked solar wind and the Earth's magnetosphere. These are formed due to the velocity shear between the plasma in the magnetosphere and magnetosheath. The role of KHI in bringing in the shocked solar wind into the terrestrial magnetosphere has been studied extensively using MHD, Hall-MHD, hybrid and PIC simulations. Such simulations oftentimes make simplifying assumptions of the boundary layer in the magnetopause. To experimentally study the effects of KHI on the boundary layer and its effectiveness in bringing in solar wind, we analyze 43 KHI events. All these events have quasi-constant IMF orientation during its interval, thereby mitigating the effects of variation of IMF in the ongoing transient magnetopause process. In this statistical study of KHIs, we demonstrate that there is a preexisting boundary layer before KHIs begin to develop. As KHI develops to its non-linear state, the ions in the magnetosphere, magnetopause, and magnetosheath are mixed, which is demonstrated using the alpha-to-proton density ratio. As a result of this mixing, the well-defined preexisting boundary layer is replaced by a much more uniformly mixed boundary layer.

A 3‐D Seismic Tomographic Study of Spreading Structures and Smooth Seafloor Generated by Detachment Faulting—The Ultra‐Slow Spreading Southwest Indian Ridge at 64°30′E

JGR–Solid Earth - Thu, 09/05/2024 - 10:54
Abstract

At ultra-slow spreading ridges, with full spreading rates less than ∼20 mm/yr, spreading is accommodated both by highly spatially and temporally segmented magmatism, and tectonic extension along large-scale detachment faults that exhume ultramafic material to the seafloor. In the most magma-poor regions, detachment faulting alternates in polarity over time, producing a “flip-flopping” effect of subsequent detachment dips. The resulting seafloor in these regions displays a morphology termed “smooth seafloor” comprising elongate, broad ridges with peridotite/serpentinite lithologies. We conducted tomographic travel-time inversion of a 3-D wide-angle seismic data set acquired over a region of smooth seafloor around 64°30′E along the Southwest Indian Ridge (SISMOSMOOTH; Cruise MD199), to produce a seismic velocity volume through the crustal section and into the uppermost mantle. We observe patterns of velocity anomalies that correspond with variations in the bathymetry arising from the mode of spreading and are interpreted as changes in the degree of alteration with depth resulting from spatial and temporal variations in fluid-rock interaction, controlled by faulting and tectonic damage processes. The detachment faults do not show simple planar structures at depth but instead mirror the shapes of the bathymetric ridges that they exhume. Magmatic input is overall highly limited, but there is one region on the lower part of an exhumed detachment footwall where a thickness of volcanic material is observed that suggests a component of syn-tectonic volcanism, which could contribute to detachment abandonment.

Deep‐Learning Phase‐Onset Picker for Deep Earth Seismology: PKIKP Waves

JGR–Solid Earth - Thu, 09/05/2024 - 10:25
Abstract

Body waves traversing the Earth's interior from a seismic source to receivers on the surface carry rich information about its internal structures. Their travel time measurements have been widely used in seismology to constrain Earth's interior at the global scale by mapping the time anomaly along their ray paths. However, picking the travel time of global seismic waves, suitable for studying Earth's fine-scale structures, requires highly skilled personnel and is often fairly subjective. Here, we report the development of an automatic picker for PKIKP waves traveling through the inner core (IC), especially nearly along Earth's diameters, based on the latest advances in supervised deep learning. A convolutional neural network (CNN) we develop automatically determines the PKIKP onset on vertical seismograms near its theoretical prediction of cataloged earthquakes. As high-quality manual onset picks of global seismic phases are limited, we employ a scheme to generate a synthetic supervised training data set containing 300,000 waveforms. The PKIKP onsets picked by our trained CNN automatic picker exhibit a mean absolute error of ∼0.5 s compared to 1,503 manual picks, comparable to the estimated human-picking error. In an integration test, the automatic picks obtained from an extended waveform data set yield a cylindrically anisotropic IC model that agrees well with the models inferred from manual picks, which illustrates the success of this pilot model. This is a significant step closer to harvesting an unprecedented volume of travel time measurements for studying the IC or other regions of the Earth's deep interior.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer