Feed aggregator

Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations

Geoscientific Model Development - Wed, 07/24/2024 - 18:52
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.

Reinterpreting ENSO's Role in Modulating Impactful Precipitation Events in California

GRL - Wed, 07/24/2024 - 17:48
Abstract

Water years (WY) 2017 and 2023 were anomalously wet for California, each alleviating multiyear drought. In both cases, this was unexpected given La Niña conditions, with most seasonal forecasts favoring drier-than-normal winters. We analyze over seven decades of precipitation and snow records along with mid-tropospheric circulation to identify recurring weather patterns driving California precipitation and Sierra Nevada snowpack. Tropical forcing by ENSO causes subtle but important differences in these wet weather patterns, which largely drives the canonical seasonal ENSO-precipitation relationship. However, the seasonal frequency of these weather patterns is not strongly modulated by ENSO and remains a primary source of uncertainty for seasonal forecasting. Seasonal frequency of ENSO-independent weather patterns was a major cause of anomalous precipitation in WY2017, record-setting snow in WY2023, and differences in precipitation outcome during recent El Niño winters 1983, 1998, and 2016. Improved understanding of recurrent atmospheric weather patterns could help to improve seasonal precipitation forecasts.

Electrical Resistivity Changes During Heating Experiments Unravel Heterogeneous Thermal‐Hydrological‐Mechanical Processes in Salt Formations

GRL - Wed, 07/24/2024 - 17:38
Abstract

Rock salt is considered a suitable medium for the permanent disposal of heat-generating radioactive waste due to its isolation properties. However, excavation damage and heating induce complex and heterogeneous thermal-hydrological-mechanical (THM) processes across different zones. Quantifying this heterogeneity is crucial for accurate long-term performance assessment models, but traditional methods lack the necessary resolution. This study employs 4D electrical resistivity tomography (ERT) monitoring during controlled heating experiments in a salt formation to unravel the spatiotemporal dynamics of THM processes. Advanced time-lapse inversion and clustering analysis quantify subsurface properties and map the heterogeneity of THM dynamics. The ERT results can estimate subsurface properties and delineate the damaged and intact zones, enabling appropriate parameterization and representation of processes for long-term modeling. This approach may be used in further improving the predictive models and ensuring the safe long-term disposal of radioactive waste in rock salt.

Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification

Geoscientific Model Development - Wed, 07/24/2024 - 17:31
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, 2024
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.

GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model

Geoscientific Model Development - Wed, 07/24/2024 - 17:31
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024, 2024
The Global Change Analysis Model (GCAM) simulates the world’s climate–land–energy–water system interactions , but its reservoir representation is limited. We developed the GLObal Reservoir Yield (GLORY) model to provide GCAM with information on the cost of supplying water based on reservoir construction costs, climate and demand conditions, and reservoir expansion potential. GLORY enhances our understanding of future reservoir capacity needs to meet human demands in a changing climate.

The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation

Geoscientific Model Development - Wed, 07/24/2024 - 17:31
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, 2024
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.

Evolution of the Climate Forcing During the Two Years After the Hunga Tonga‐Hunga Ha'apai Eruption

JGR–Atmospheres - Wed, 07/24/2024 - 17:04
Abstract

We calculate the climate forcing for the 2 ys after the 15 January 2022, Hunga Tonga-Hunga Ha'apai (Hunga) eruption. We use satellite observations of stratospheric aerosols, trace gases and temperatures to compute the tropopause radiative flux changes relative to climatology. Overall, the net downward radiative flux decreased compared to climatology. The Hunga stratospheric water vapor anomaly initially increases the downward infrared radiative flux, but this forcing diminishes as the anomaly disperses. The Hunga aerosols cause a solar flux reduction that dominates the net flux change over most of the 2 yrs period. Hunga induced temperature changes produce a decrease in downward long-wave flux. Hunga induced ozone reduction increases the short-wave downward flux creating small sub-tropical increase in total flux from mid-2022 to 2023. By the end of 2023, most of the Hunga induced radiative forcing changes have disappeared. There is some disagreement in the satellite measured stratospheric aerosol optical depth (SAOD) observations which we view as a measure of the uncertainty; however, the SAOD uncertainty does not alter our conclusion that, overall, aerosols dominate the radiative flux changes.

Role of Salinity Barrier Layers and Westerly Wind Anomalies on Atlantic Niño Events

GRL - Wed, 07/24/2024 - 16:44
Abstract

Previous studies have confirmed the diverse spatiotemporal characteristics of Atlantic Niño events. Our research further reveals the crucial preparatory role of equatorial western Atlantic barrier layers (BL) and the triggering effect of westerly wind bursts (WWB) on different varieties of Atlantic Niño. Strong easterly winds typically facilitate the formation of thick BL by deepening isothermal layer depth in the western Atlantic through horizontal transport. The existence of BL accumulates the necessary heat for the onset of Atlantic Niño. Additionally, the timing of BL occurrences, the presence of easterly wind anomalies preceding WWB, and the duration of westerly wind anomalies jointly contribute to Atlantic Niño diversity. Persistent westerly wind anomalies following strong easterly winds often lead to Atlantic Niño events lasting over 6 months, while short-lived events occur when westerly wind anomalies cease shortly after their onset.

The Varied Role of Atmospheric Rivers in Arctic Snow Depth Variations

GRL - Wed, 07/24/2024 - 16:38
Abstract

The state and fate of snow on sea ice are crucial in the mass and energy balance of sea ice. The function of atmospheric rivers (ARs) on snow depth over sea ice has not been measured thus far, limiting the understanding of the mechanism of snow depth changes. Here, the effect of ARs on snow depth changes was explored. We found that increased AR frequency is responsible for winter-autumn snow accumulation and spring-summer snow melting. The 2 m air temperature (T2m), rainfall, snowfall, mean net longwave radiation (NLR), mean net shortwave radiation (NSR) and cloud radiative effect (CRE) during ARs explain the changes in snow depth triggered by AR occurrence. This work helps us understand how ARs affect snow depth changes through related physical processes, promotes an understanding of climate systems and provides a theoretical basis for snow treatment in sea ice models.

An interlaboratory comparison to quantify oxidative potential measurement in aerosol particles: challenges and recommendations for harmonisation

Atmos. Meas. techniques - Wed, 07/24/2024 - 16:08
An interlaboratory comparison to quantify oxidative potential measurement in aerosol particles: challenges and recommendations for harmonisation
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian S. Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Aikaterina Seitanidi, Pourya Shahpoury, Eduardo J. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-107,2024
Preprint under review for AMT (discussion: open, 0 comments)
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP DTT assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardization in OP procedures.

Simulation characteristics of seismic translation and rotation under the assumption of nonlinear small deformation

Nonlinear Processes in Geophysics - Wed, 07/24/2024 - 10:42
Simulation characteristics of seismic translation and rotation under the assumption of nonlinear small deformation
Wei Li, Yun Wang, Chang Chen, and Lixia Sun
Nonlin. Processes Geophys. Discuss., https//doi.org/10.5194/npg-2024-17,2024
Preprint under review for NPG (discussion: open, 2 comments)
In contrast to classical elastodynamics, which assumes linear small deformations, we develop new seismic elastic wave equations using the Green strain tensor and explore nonlinearity as a source of observed disparities. We simulate different seismic sources to analyze translational and rotational components, revealing significant errors in linear approximations. Our results show that nonlinear effects are pronounced in rotational motions during strong earthquakes.

Ionospheric upwelling and the level of associated noise at solar minimum

Ionospheric upwelling and the level of associated noise at solar minimum
Timothy Wemimo David, Chizurumoke Michael Michael, Darren Wright, Adetoro Temitope Talabi, and Abayomi Ekundayo Ajetunmobi
Ann. Geophys., 42, 349–354, https://doi.org/10.5194/angeo-42-349-2024, 2024
The Earth’s upper atmospheres are dominated by matter also known as plasma. These plasmas can flow from the lower region, the ionosphere, to the further-up region, the magnetosphere, which is described as upwelling. We analyse data for ionospheric upwelling over the solar minimum period. A main finding is that the noise or rejected data in the dataset were predominant around the local evening and in winter and minimum around local noon and in summer.
Categories:

Quantifying the Diversity of an Atmospheric Aerosol Population in an Arctic Oil Field on a Single‐Particle Level

JGR–Atmospheres - Wed, 07/24/2024 - 04:50
Abstract

As the Arctic rapidly warms, sea ice extent is decreasing and oil and gas extraction activities are expanding. Local combustion emissions affect the Arctic atmospheric aerosol chemical mixing state (the distribution of chemical species across the aerosol population), which impacts climate-relevant properties. Bulk and single-particle measurements of submicron aerosols were conducted at Oliktok Point, Alaska within the North Slope of Alaska oil fields. In this work, we quantify aerosol diversity using online single-particle mass spectrometry data (32,880 individual particles), offline single-particle microscopy data (20,912 individual particles), and online bulk aerosol mass spectrometry and aethalometer data. This method was used to derive individual particle mass fractions for both refractory and non-refractory material within distinct particle types. Single-particle, average single-particle, and bulk population diversities (D i , D α , D γ , respectively) and mixing state indices (χ) were calculated for the data set. Calculated D i values were generally low (2.2 ± 0.6), as individual particle masses were dominated by a few chemical species of interest. Aged aerosol particles (those internally mixed with nitrate and/or sulfate) exhibited higher D i values (>3) compared to recently emitted (fresh) aerosol particles. During oil field plume periods, D α values approached three due to the abundance of diesel combustion particles, which were rich in sulfate, black carbon, and organic aerosol. Overall, the submicron aerosol population within the Arctic oil fields was found to be relatively externally mixed (χ < 50%), due to the constant local emissions within oil fields combining with background aerosol and locally emitted sea spray aerosol at the coastal site.

Combining Top‐Down and Bottom‐Up Approaches to Evaluate Recent Trends and Seasonal Patterns in UK N2O Emissions

JGR–Atmospheres - Wed, 07/24/2024 - 04:40
Abstract

Atmospheric trace gas measurements can be used to independently assess national greenhouse gas inventories through inverse modeling. Atmospheric nitrous oxide (N2O) measurements made in the United Kingdom (UK) and Republic of Ireland are used to derive monthly N2O emissions for 2013–2022 using two different inverse methods. We find mean UK emissions of 90.5 ± 23.0 (1σ) and 111.7 ± 32.1 (1σ) Gg N2O yr−1 for 2013–2022, and corresponding trends of −0.68 ± 0.48 (1σ) Gg N2O yr−2 and −2.10 ± 0.72 (1σ) Gg N2O yr−2, respectively, for the two inverse methods. The UK National Atmospheric Emissions Inventory (NAEI) reported mean N2O emissions of 73.9 ± 1.7 (1σ) Gg N2O yr−1 across this period, which is 22%–51% smaller than the emissions derived from atmospheric data. We infer a pronounced seasonal cycle in N2O emissions, with a peak occurring in the spring and a second smaller peak in the late summer for certain years. The springtime peak has a long seasonal decline that contrasts with the sharp rise and fall of N2O emissions estimated from the bottom-up UK Emissions Model (UKEM). Bayesian inference is used to minimize the seasonal cycle mismatch between the average top-down (atmospheric data-based) and bottom-up (process model and inventory-based) seasonal emissions at a sub-sector level. Increasing agricultural manure management and decreasing synthetic fertilizer N2O emissions reduces some of the discrepancy between the average top-down and bottom-up seasonal cycles. Other possibilities could also explain these discrepancies, such as missing emissions from NH3 deposition, but these require further investigation.

Propagation Effects of Slanted Narrow Bipolar Events: A Rebounding‐Wave Model Study

JGR–Atmospheres - Tue, 07/23/2024 - 20:04
Abstract

Narrow bipolar events (NBEs) are impulsive and powerful intracloud discharges. Recent observations indicate that some NBEs exhibit a slanted orientation rather than strictly vertical. This paper investigates the effect of the slanted NBEs using a newly developed rebounding-wave model. The modeling results are validated against the full-wave Finite- Difference Time-Domain method and compared with measurements for both vertical and slanted NBE cases. It is found that the inclination of the NBEs affects both the waveforms and amplitudes of the electrostatic, induction and radiation components of the electric fields at close distances (≤10 km). However, it primarily influences the amplitudes of the fields for distances beyond 50 km, where the radiation component dominates, resulting in changes of ≥30% when the slant angle exceeds 30°. The slanted rebounding-wave model improves the agreement with respect to a purely vertical channel and can be extended to any discharge geometry at arbitrary observation distances.

Changes in the Direct Climate Effect of Black Carbon Aerosols in East Asia Under the “Dual Carbon” Goal of China

JGR–Atmospheres - Tue, 07/23/2024 - 19:54
Abstract

In the context of China's “dual carbon” goal, emissions of air pollutants are expected to significantly decrease in the future. Thus, the direct climate effects of black carbon (BC) aerosols in East Asia are investigated under this goal using an updated regional climate and chemistry model. The simulated annual average BC concentration over East Asia is approximately 1.29 μg/m3 in the last decade. Compared to those in 2010–2020, both the BC column burden and instantaneous direct radiative forcing in East Asia decrease by more than 55% and 80%, respectively, in the carbon peak year (2030s) and the carbon neutrality year (2060s). Conversely, the BC effective radiative forcing (ERF) and regional climate responses to BC exhibit substantial nonlinearity to emission reduction, possibly resulting from different adjustments of thermal-dynamic fields and clouds from BC-radiation interactions. The regional mean BC ERF at the tropopause over East Asia is approximately +1.11 W/m2 in 2010–2020 while negative in the 2060s. BC-radiation interactions in the present-day impose a significant annual mean cooling of −0.2 to −0.5 K in central China but warming +0.3 K in the Tibetan Plateau. As China's BC emissions decline, surface temperature responses show a mixed picture compared to 2010–2020, with more cooling in eastern China and Tibet of −0.2 to −0.3 K in the 2030s, but more warming in central China of approximately +0.3 K by the 2060s. The Indian BC might play a more important role in East Asian climate with reduction of BC emissions in China.

Stable Water Isotope Signals and Their Relation to Stratiform and Convective Precipitation in the Tropical Andes

JGR–Atmospheres - Tue, 07/23/2024 - 19:48
Abstract

Stratiform and convective precipitation are known to be associated with distinct isotopic fingerprints in the tropics. Such rain type specific isotope signals are of key importance for climate reconstructions derived from climate proxies (e.g., stable isotopes in tree rings). Recently, the relation between rain type and isotope signal in present-day climate has been intensively discussed. While some studies point out the importance of deep convection, other studies emphasize the role of stratiform precipitation for strongly depleted isotope signals in precipitation. Uncertainties arise from observational studies due to data scarcity while modeling approaches with global climate models cannot explicitly resolve convective processes and rely on parameterizations. High-resolution climate models are particularly important for studies over complex topography and for the simulation of convective cloud formation and organization. Therefore, we applied the isotope-enabled version of the high-resolution climate model from the Consortium for Small-Scale Modeling (COSMOiso) over the Andes of tropical south Ecuador, South America, to investigate the influence of stratiform and convective rain on the stable oxygen isotope signal of precipitation (δ18OP). Our results highlight the importance of deep convection for depleting the isotopic signal of precipitation and increasing its deuterium excess. Due to the opposing effect of shallow and deep convection on the δ18OP signal, the use of a stratiform fraction might be misleading. We therefore propose to use a shallow and deep convective fraction to analyze the effect of rain types on δ18OP.

Assessing the Accuracy of Eddy‐Covariance Measurement at Different Source Emission Scenarios

JGR–Atmospheres - Tue, 07/23/2024 - 19:39
Abstract

The eddy-covariance (EC) method assumes a homogeneous underlying surface. However, recent studies increasingly examining on EC measurements across diverse surfaces, raising concerns about measurement precision and accuracy. This study evaluates the impacts of altering the emission height and rate on the EC measurements through utilizing an artificial source emission system. The results demonstrated a significant impact of changes in the emission height and rate on the EC measurements. Higher emission height may lead to the underestimation of the measured EC fluxes, attributed to the variations in the footprint area and turbulent transport. Traditional data quality control methods may discard effective EC data during sudden changes in the emission rate. Therefore, to secure effective data and accurately observe emissions, it was practical to analyze the auxiliary factors, such as environmental factors, such as vapor pressure deficit (VPD). An unresolved issue would persist with the correction of the EC method for accurately capturing the actual emission signals when there was a sudden increase in the data range or deviation. Furthermore, comparing the footprint model estimations with the actual emissions demonstrated the necessity of footprint analyses, offering a valuable reference for the data calibration when the uncertainties arose owing to inhomogeneous underlying surfaces. Although EC fluxes across the three averaging periods indicated no significant differences, the footprint model suggested that 15-min interval was the optimal. Further validation experiments are required for the EC measurements in locations with complex source conditions to enhance our understanding of land-atmosphere flux exchange.

Spatial Source Contribution and Interannual Variation in Deposition of Dust Aerosols Over the Chinese Loess Plateau

JGR–Atmospheres - Tue, 07/23/2024 - 19:28
Abstract

The Chinese Loess Plateau (CLP) in northern China is home to one of the most prominent loess records in the world, reflecting past eolian dust activity in East Asia. However, their interpretation is hampered by ambiguity in the origin of loess-forming dust and an incomplete understanding of the circulation forcing dust accumulation. In this study, we used a novel modeling approach combining a dust emission model FLEXDUST with simulated back trajectories from FLEXPART to trace the dust back to where it was emitted. Over 21 years (1999–2019), we modeled back trajectories for fine (∼2 μm) and super-coarse (∼20 μm) dust particles at six CLP sites during the peak dust storm season from March to May. FLEXPART source-receptor relationships are combined with the dust emission inventory from FLEXDUST to create site-dependent high-resolution maps of the source contribution of deposited dust. The nearby dust emission areas were found to be the main source of dust to the CLP. Dust deposition across the CLP was found to predominantly occur via wet removal, with also some super-coarse dust from distant emission regions being wet deposited following high-level tropospheric transport. The high topography located on the downwind side of the emission area plays an essential role in forcing the emitted super-coarse dust upward. On an interannual scale, the phase of the Arctic Oscillation in the preceding winter was found to have a strong association with the spring deposition rate on the CLP, while the strength of the East Asian Winter Monsoon was less influential.

Imaging the Garlock Fault Zone With a Fiber: A Limited Damage Zone and Hidden Bimaterial Contrast

JGR–Solid Earth - Tue, 07/23/2024 - 19:05
Abstract

The structure of fault zones and the ruptures they host are inextricably linked. Fault zones are narrow, which has made imaging their structure at seismogenic depths a persistent problem. Fiber-optic seismology allows for low-maintenance, long-term deployments of dense seismic arrays, which present new opportunities to address this problem. We use a fiber array that crosses the Garlock Fault to explore its structure. With a multifaceted imaging approach, we peel back the shallow structure around the fault to see how the fault changes with depth in the crust. We first generate a shallow velocity model across the fault with a joint inversion of active source and ambient noise data. Subsequently, we investigate the fault at deeper depths using travel-time observations from local earthquakes. By comparing the shallow velocity model and the earthquake travel-time observations, we find that the fault's low-velocity zone below the top few hundred meters is at most unexpectedly narrow, potentially indicating fault zone healing. Using differential travel-time measurements from earthquake pairs, we resolve a sharp bimaterial contrast at depth that suggests preferred westward rupture directivity.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer