EOS

Syndicate content Eos
Science News by AGU
Updated: 1 day 7 hours ago

Researchers Put a Number on Animals’ Earth-Shaping Effects

Thu, 03/27/2025 - 13:07

Beavers dam rivers. Ants make mounds and dig tunnels. Foraging fish shift particles on riverbeds. Domestic cattle compact the soil beneath their hooves. For decades, researchers have chronicled the ways that individual species modify their environments. But it’s not clear what all this earth-moving amounts to.

“Biology rivals geophysical forces in landscapes.”

New research estimates that wild animals put 76,000 gigajoules of energy annually into shaping Earth’s landscapes—equivalent to the energy of hundreds of thousands of extreme floods. The energy contribution of livestock exceeds this by 3 orders of magnitude.

“There is this mindset that these are quirky, unique, unusual processes,” said Gemma Harvey, a coauthor and a physical geographer at Queen Mary University of London in the United Kingdom. Researchers often think that animals’ geomorphic, or earth-shaping, impacts are interesting but not all that important, she said. But the new research shows that “biology rivals geophysical forces in landscapes.”

Harvey and her colleagues scoured the literature for reports of animals’ geomorphic actions. From studies in English on terrestrial and freshwater ecosystems, the team identified 500 species that engage in activities such as mixing the soil, digging, burrowing, trampling ground, and constructing mounds and dams.

More than a quarter of these creatures are threatened, declining, or have population trends that scientists know little to nothing about. Their geomorphic processes could be lost from landscapes before we even understand their importance, Harvey said.

The researchers estimated how much energy these 500 animal species put into shaping terrestrial and freshwater environments. Data on the energy creatures expend on biomorphic activities are scarce, Harvey said. The values that do exist range from less than 1% of daily energy expenditure to more than 40% for species such as earthworms, which spend a lot of time burrowing. For 495 wild animal species and five livestock taxa (cattle, feral horse, goat, sheep, and yak) the team estimated collective geomorphic energy based on the global abundance of each species and assuming 1% of animals’ total energy budget being put toward earth-shaping.

“When they use that conservative number, the magnitude of animal contributions is pretty damn big.”

“They used a very good and conservative number,” said Clive Jones, an ecologist at the Cary Institute of Ecosystem Studies in Millbrook, N.Y., who wasn’t involved with the work. “And when they use that conservative number, the magnitude of animal contributions is pretty damn big.”

The 76,000 gigajoules wild animals put into remodeling Earth’s surface each year amounts to 200,000 monsoon seasons or 500,000 extreme river floods. And the figure doesn’t even include oceans or coasts.

Livestock expend an estimated 34.5 million gigajoules—450 times that of wild animals—on geomorphic processes including trampling ground.

The wild animal estimate likely undershoots creatures’ total impact because many earth-moving species, particularly insects, likely haven’t been discovered yet. (The actions of large beasts—e.g., pit-digging by bears and rooting by boars—are well known.) And data on biodiversity hot spots such as the tropics are sparse compared with temperate environments in the Northern Hemisphere.

The researchers shared their results in the Proceedings of the National Academy of Sciences of the United States of America.

Creature Features

There’s been a long-running discussion among geomorphologists about how much animals’ actions matter, Jones said. “Is there any net effect that you could measure?” There are not comprehensive enough data to answer that question yet, Jones said, but the new work is “a very legitimate and innovative way to start getting at this problem.” One of the difficulties in tallying up animals’ effects is that the variety of actions they perform dwarfs the number of physical geomorphic processes, he said.

Hippos can cause stream bank erosion, affecting the course of a river. Credit: Richard Mortel/Flickr, CC BY 2.0

A full accounting of animal impacts would include coastal and marine environments, where animals ranging from worms and crustaceans to porpoises and fish disturb seabed sediments. Meanwhile, the Great Barrier Reef is the largest zoogeomorphic feature on Earth excluding those built by humans, said Ilya Buynevich, a geologist at Temple University in Philadelphia who was not involved with the study.

Researchers could also study whether different organisms interact in certain environments to create cascading effects, Harvey said. For instance, the actions of some grazers change the underground soil fauna. Other species may affect their environments at only a certain threshold. Groundwater-dwelling amphipods, for example, may maintain the porosity of aquifer sediments, but only when the crustaceans are above a certain population density, Harvey said. The new research focused almost entirely on the effects of animals in their native range; future studies may consider the effects of invasive or introduced species.

Nonbiologic processes are usually “paramount” for most scientists, even ecologists, Buynevich said. But how animals transform landscapes should be considered in conservation efforts, such as animal reintroductions and rewilding. And these processes aren’t typically represented in landscape evolution models. Earth scientists looking for the forces that have shaped environments often don’t appreciate what animals may have done, he said.

For instance, Buynevich studies geomorphic processes in coastal settings where researchers might point to big storms or tsunamis in explaining the features they observe. “Those anomalies that I see under these thousand-year-old beaches,” Buynevich said, “there’s a pretty good chance that they may be sea turtle nests.” Scientists need to at least consider the possibility that features are biogenic, he said.

—Carolyn Wilke (@CarolynMWilke), Science Writer

28 March 2025: This article has been updated to clarify how amphipods affect their environment.

Citation: Wilke, C. (2025), Researchers put a number on animals’ earth-shaping effects, Eos, 106, https://doi.org/10.1029/2025EO250113. Published on 27 March 2025. Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Cómo pueden los vulcanólogos mejorar la resiliencia urbana al cambio climático

Thu, 03/27/2025 - 13:01

This is an authorized translation of an Eos article. Esta es una traducción al español autorizada de un artículo de Eos.

Las ciudades del noroeste del Pacífico estadounidense y canadiense llevan mucho tiempo siendo incubadoras de políticas ambientales novedosas. Los gobiernos de Portland (Oregón), Seattle y Vancouver (Columbia Británica), por ejemplo, fueron de los primeros en promulgar límites de crecimiento urbano [Nelson y Moore, 1993; Hepinstall-Cymerman et al., 2011], planes de acción climática [Rutland y Aylett, 2008; Affolderbach y Schulz, 2017] y políticas de energía limpia.

Estas ciudades también comparten entornos geológicos similares — los volcanes activos de las Cascadas dominan sus horizontes orientales, mientras que al oeste, una zona de subducción oculta mar adentro amenaza con terremotos potencialmente catastróficos. Esta yuxtaposición de apertura a la innovación política y experiencia de vida junto a peligros tectónicos activos apunta a una forma no reconocida previamente en que las ciudades, en esta región y más allá, podrían aprender y aplicar importantes lecciones sobre resiliencia a otros riesgos — al aprender de los científicos de los observatorios volcánicos del mundo.

Los volcanes y los terremotos plantean riesgos particulares en el noroeste del Pacífico y en otros lugares, pero al igual que las zonas urbanizadas de todo el mundo, estas regiones ahora también se enfrentan a amenazas climáticas sin precedentes. Cada ciudad debe hacer frente a su propia combinación de peligros cada vez mayores derivados del calor extremo, los incendios forestales y el humo, el viento, el hielo, la subida del nivel del mar y las inundaciones. Las combinaciones de estos peligros, muchos de los cuales se producen a escalas y con frecuencias que van más allá que aquellas experimentadas por los miembros y líderes de las comunidades, están desbordando las capacidades de los gobiernos municipales para prepararse, responder y recuperarse.

El humo de un incendio forestal permanece sobre Portland, Oregón, el 9 de septiembre de 2020, durante una temporada de incendios especialmente destructiva en el estado. Crédito: Tedder/Wikimedia Commons, CC BY-SA 4.0

Entre los mayores desafíos -y oportunidades- para las ciudades que intentan aumentar su resiliencia es adaptar las lecciones aprendidas en otros lugares a sus situaciones específicas.

Pocos gobiernos locales cuentan con personal especializado para adaptarse y responder adecuadamente en tiempo real a catástrofes que cambian y se agravan con rapidez [Fink y Ajibade, 2022]. Tampoco disponen de los recursos necesarios para educar al público sobre la creciente amplitud y gravedad de los riesgos exacerbados por el clima o para invertir en infraestructuras físicas y sociales suficientes para proteger a los residentes de los impactos catastróficos. Uno de los mayores desafíos -y oportunidades- para las ciudades que intentan aumentar su resiliencia es adaptar las lecciones aprendidas en otros lugares a sus situaciones geográficas, demográficas, políticas y económicas específicas.

Aquí es donde los enfoques de los vulcanólogos pueden ayudar.

Un modelo para cartografiar el riesgo local

Único entre los grupos que vigilan los riesgos naturales, el personal de los observatorios de volcanes y sus colaboradores – como lo ha sido uno de nosotros (J.F.) desde hace casi 50 años – deben comprender la gama de riesgos concentrados en un entorno geográfico determinado. Los equipos y centros que rastrean la sismicidad, los derrumbes, los flujos de escombros, los tsunamis, los huracanes, los tornados o las inundaciones típicamente trabajan en múltiples sitios a escala regional, nacional o mundial.

En cambio, la mayoría de los observatorios de volcanes, algunos de los cuales datan de mediados del siglo XIX, están situados a la vista de uno o varios volcanes específicos que son el centro de su atención. El personal de estos observatorios debe aplicar los conocimientos adquiridos de otros volcanes, y de la teoría general sobre los riesgos volcánicos, a las condiciones particulares de su sitio para evaluar y prever los riesgos locales.

Esta necesidad de adaptar los pronósticos se extiende hasta escalas metropolitanas e incluso a nivel de vecindarios. Por ejemplo, algunas zonas de Tacoma (Washington) están construidas sobre depósitos de flujos de lodo volcánico procedentes de erupciones anteriores del monte Rainier, mientras que los suburbios de Seattle, a menos de 30 kilómetros más al norte, se asientan sobre flujos piroclásticos consolidados procedentes de ese mismo volcán.

Nápoles, Italia, ofrece otro ejemplo: Los residentes de la parte oriental de la ciudad tienen que preocuparse por los productos explosivos que salen del Vesubio, mientras que los barrios occidentales cercanos a los Campos Flégreos se enfrentan a mayores amenazas por los gases volcánicos, el levantamiento del suelo y la contaminación de las aguas subterráneas. Las estrategias de alertas y evacuaciones, así como las necesidades de educación pública, pueden variar mucho de una comunidad local a otra.

Lo mismo ocurre con los riesgos climáticos urbanos, que pueden diferir drásticamente de una manzana a otra, en función de variables como la altitud, la cubierta arbórea, las prácticas de construcción, la zonificación y la proximidad al agua. Por ejemplo, la ciudad de Tacoma ha cartografiado la resiliencia ante el aumento del nivel del mar a nivel para cada manzana, mostrando las áreas que probablemente serán inundadas según diferentes escenarios climáticos.

Los vulcanólogos elaboran mapas de las regiones que rodean a determinados volcanes que delimitan las zonas sujetas a diferentes peligros. Este mapa simplificado de peligros en torno al Monte St. Helens, en el Estado de Washington, destaca las zonas de riesgo por flujos piroclásticos y desprendimientos de rocas próximos al volcán, así como por flujos de lodo más distantes. Crédito: U.S. Geological Survey

Para ayudar a transmitir los riesgos de la actividad volcánica que varían geográficamente, los vulcanólogos de los observatorios elaboran mapas detallados de peligrosidad específicos de los volcanes en los que se centran. Estos mapas podrían servir de modelo para la nueva práctica de cartografiar los riesgos climáticos urbanos. Los mapas de peligrosidad de los volcanes podrían, por ejemplo, delimitar las zonas sujetas a flujos de lodo volcánico, eventos de colapso de domos o emisiones de gases, proporcionando a las comunidades información anticipada relevante a nivel local. Mapas similares de las zonas urbanas podrían indicar los peligros climáticos más probables o de mayor impacto a escala de vecindarios o incluso de manzana, o podrían resaltar en qué zonas de relieve múltiples peligros podrían provocar efectos compuestos.

De manera crucial, los observatorios volcánicos monitorean, mapean y comunican riesgos que no respetan límites municipales, estatales ni siquiera nacionales (por ejemplo, los flujos de lodo volcánico del Monte Baker en Washington pueden afectar los suburbios de Vancouver, Columbia Británica). Este enfoque indiferente a las fronteras ofrece un modelo valioso para prepararse y responder a las amenazas climáticas, las cuales se experimentan a través de distintas jurisdicciones, pero a menudo son abordadas de manera fragmentada por los gobiernos locales.

Llevar los peligros a casa

Otro paralelismo entre los observatorios de volcanes y las oficinas de resiliencia de las ciudades es que el personal de cada uno de ellos a veces debe alertar al público sobre eventos que están fuera del alcance de la experiencia vivida previamente por la comunidad. Por ejemplo, cuando los volcanes despiertan después de largos periodos de inactividad, como el Monte Santa Helena en 1980 o el Monte Pinatubo en 1991, típicamente muy pocos, si es que incluso alguno, de los residentes cercanos se han preocupado o preparado alguna vez para los peligros eruptivos.

En esta foto de junio de 1991, tras la erupción masiva del volcán Pinatubo en la isla de Luzón (Filipinas), se observan los daños causados río abajo, incluido un puente sobre el canal del río. Antes de este acontecimiento, el Pinatubo no había entrado en erupción desde hacía siglos. Crédito: U.S. Geological Survey

De manera similar, los habitantes de las ciudades tienen dificultades para imaginar los peligros del cambio climático que nunca han enfrentado. Hace diez años, por ejemplo, los residentes de Portland — como nosotros — probablemente no habrían previsto temperaturas de 108°F, 112°F y 116°F en días sucesivos, como ocurrió en 2021. (Antes del evento de del domo de calor de ese año, la temperatura más alta registrada había sido de 107°F en 1981). De igual manera, probablemente no habríamos previsto períodos prolongados de aire cargado de humo que la EPA de EE. UU. designó como “insalubre para grupos sensibles” — antes de 2015, Portland nunca había experimentado tales condiciones — o incendios forestales que se acercaran a la zona metropolitana, como sucedió en 2017 y 2020. Tendencias similares de condiciones históricamente anómalas que ocurren con mayor frecuencia se están presentando en un número creciente de ciudades alrededor del mundo.

Los fallecidos cineastas Katia y Maurice Krafft, vulcanólogos famosos por su prolífica y cercana documentación de erupciones activas, reconocieron el problema de la falta de preparación de las comunidades ante los riesgos naturales tras la erupción del Nevado del Ruiz en Colombia en 1985. Aquel suceso acabó con la vida de 22, 000 personas, a pesar de que los geólogos habían advertido un mes antes sobre los mismos tipos de flujos de lodo que acabaron sepultando la ciudad de Armero [Voight, 1990]. Los Krafft dedicaron entonces sus vidas a hacer películas para ayudar a las poblaciones vulnerables a apreciar mejor los peligros desconocidos asociados a erupciones volcánicas poco frecuentes, pero potencialmente mortales.

Usando las herramientas de edición relativamente simples de las décadas de 1980 y 1990, los Krafft superpusieron imágenes de erupciones volcánicas violentas sobre paisajes distantes y panorámicas de ciudades familiares para las poblaciones locales en otros lugares, con el fin de captar su atención y provocar reacciones más viscerales que las que podrían generar las conferencias orales o los informes escritos.

Las oficinas de resiliencia urbana pueden aprovechar potentes tecnologías como la realidad virtual, la realidad aumentada y los teléfonos inteligentes equipados con LiDAR, así como las populares plataformas de medios sociales.

Las oficinas de resiliencia urbana actuales deben hacer lo mismo con sus residentes amenazados por nuevos extremos climáticos. Para ello, pueden aprovechar potentes tecnologías como la realidad virtual (RV), la realidad aumentada (RA) y los teléfonos inteligentes equipados con LiDAR, así como populares plataformas de redes sociales como TikTok, que se están utilizando ahora para complementar las herramientas tradicionales de evaluación de los riesgos volcánicos. Por ejemplo, la RV y la RA se han utilizado para comunicar el riesgo volcánico a las poblaciones locales y a los turistas que visitan el Monte Vesubio y las ruinas de Pompeya [Solana et al., 2008]. Y la RV combinada con motores de software de juegos ha permitido analizar la cartografía basada en drones de zonas de otro modo inaccesibles de la isla griega de Santorini, donde el asentamiento de la civilización minoica fue destruido por erupciones volcánicas en torno al año 1600 a.C. [Tibaldi et al., 2020].

Colaboración, no colonialismo

Una tercera similitud entre el trabajo de los vulcanólogos de los observatorios y los programas de resiliencia climática urbana es la necesidad de trabajar de manera colaborativa con expertos locales y residentes, pero evitando el “colonialismo científico“. Muchos de los volcanes más peligrosos del mundo se encuentran en países de ingresos bajos y medios. Los funcionarios y científicos de esos países a menudo se benefician de la ayuda de colegas de observatorios en otros países para evaluar e interpretar los riesgos volcánicos locales. Sin embargo, esta asistencia a veces genera resentimiento cuando los investigadores extranjeros recopilan y publican datos críticos sin reconocer adecuadamente ni incluir a los observadores locales.

El resentimiento también puede surgir en los esfuerzos relacionados con la resiliencia urbana. Muchas de las comunidades más vulnerables a las amenazas climáticas se encuentran en países y ciudades que carecen de grandes establecimientos científicos o presupuestos para implementar medidas de resiliencia. En contraste, los enfoques más visibles y prevalentes de resiliencia climática han sido desarrollados por y para comunidades más acomodadas. La barrera del río Támesis, construida hace décadas para proteger a Londres de inundaciones severas, fue un ejemplo temprano de esto; la infraestructura de Copenhague para gestionar lluvias intensas es un ejemplo más reciente.

Las instituciones adineradas a veces ayudan a asegurar recursos para apoyar a los gestores y personal técnico en áreas de bajos ingresos, quienes luego pueden comprender y relacionarse mejor con sus poblaciones locales y generar respuestas culturalmente apropiadas. Como gerente de sostenibilidad en la Oficina de Planificación y Sostenibilidad de la ciudad de Portland, uno de nosotros (M.A.) fue frecuentemente llamado a asesorar a funcionarios municipales de otros países. De manera similar, el Banco Mundial comúnmente trae asesores de la Unión Europea o de América del Norte para ser consultores en proyectos en África y Asia. Sin embargo, al igual que con los vulcanólogos, el objetivo de estos asesores en resiliencia urbana debe ser ayudar a los funcionarios locales a lograr autosuficiencia científica, en lugar de dependencia.

Dado que la mayoría de las ciudades comparten una serie de responsabilidades comunes -incluida la seguridad pública, la gestión del agua, la respuesta a emergencias y el mantenimiento de infraestructuras-, también comparten retos comunes a la hora de hacer frente al cambio climático

Dado que la mayoría de las ciudades comparten una serie de responsabilidades comunes -incluida la seguridad pública, la gestión del agua, la respuesta a emergencias y el mantenimiento de infraestructuras-, también comparten retos comunes a la hora de hacer frente al cambio climático (aunque su combinación específica de riesgos varíe). Por ello, las iniciativas de aprendizaje entre iguales han intentado llenar pronunciados vacíos en el conocimiento del clima a escala de las ciudades. Organizaciones no gubernamentales como el Grupo de Liderazgo Climático de Ciudades C40, la Red MetroLab, ICLEI-Gobiernos Locales por la Sostenibilidad y la Red de Ciudades Resilientes (creada a partir de la iniciativa 100 Ciudades Resilientes de la Fundación Rockefeller) han contribuido a aumentar la concienciación sobre las crecientes amenazas a las que se enfrentan las ciudades, así como sobre las mejores prácticas para responder a ellas. Los organismos federales de Estados Unidos, como la Agencia Federal de Gestión de Emergencias, el Departamento de Vivienda y Desarrollo Urbano y la NOAA, también ofrecen directrices a los gobiernos locales.

Sin embargo, los funcionarios locales han criticado a veces los enfoques de estos programas y agencias de amplio alcance por ser demasiado prescriptivos o verticalistas. Incluso la idea de que existe un modelo único de «ciudad resiliente» al que deberían aspirar las «ciudades normales» ha recibido considerables críticas [Naef, 2022]. Lo que suele faltar es la aportación de expertos locales, incluidas voces indígenas, con los conocimientos y la amplia experiencia práctica necesarios para asesorar a sus ciudades sobre los retos a los que se enfrentan y sobre soluciones adecuadas, viables y adaptadas.

Los participantes en un taller en Garut, Java Occidental, Indonesia -incluyendo científicos del Programa de Asistencia en Desastres Volcánicos del Servicio Geológico de EE.UU. y socios locales- discuten los usos de los mapas de peligro volcánico. Crédito: U.S. Geological Survey

También en este caso, los vulcanólogos gubernamentales pueden ofrecer lecciones útiles. Agencias nacionales como el Servicio Geológico de Estados Unidos (con su Programa de Asistencia en Desastres Volcánicos), la Agencia Meteorológica de Japón, el Instituto Nacional de Geofísica y Vulcanología de Italia, el Instituto de Física del Globo de París de Francia y Ciencia GNS de Nueva Zelanda cuentan con equipos de vulcanólogos bien dotados que pueden desplegar en crisis emergentes. En lugar de actuar unilateralmente para recopilar datos o dirigir las respuestas, estos equipos ayudan a evaluar los peligros inmediatos al tiempo que apoyan a los científicos y funcionarios locales, con los que a menudo ya han establecido relaciones, para que se hagan cargo de los esfuerzos de respuesta tan pronto como sea práctico [Lowenstern et al., 2022].

Las organizaciones que se centran en la resiliencia climática urbana podrían seguir el modelo de estos programas para crear acuerdos similares que se asocien con los gobiernos de las ciudades y ofrezcan asistencia rápida durante las emergencias juntocon el desarrollo de recursos humanos a largo plazo. Estas asociaciones no tienen por qué ser prescriptivas ni considerarse puramente altruistas. Los países menos desarrollados pueden ofrecer lecciones clave a sus homólogos más ricos, que quizá estén empezando ahora a hacer frente al tipo de perturbaciones climáticas a gran escala que han afectado a las economías emergentes durante muchas décadas. Anguelovski et al. [2014], por ejemplo, señalaron las lecciones de resiliencia de Durban (Sudáfrica), Quito (Ecuador) y Surat (India) que son relevantes para las ciudades del Norte Global que se enfrentan a nuevos retos.

Además, al igual que los observatorios de volcanes y los programas de intercambio internacional son fundamentales para formar a las futuras generaciones de expertos en erupciones, los nuevos programas centrados en ayudar a las ciudades vulnerables a prepararse para los desastres climáticos podrían incluir de forma similar la educación y la formación de futuros expertos en resiliencia como parte de sus estatutos.

Compartir los conocimientos necesarios

La transferencia de las enseñanzas de la vulcanología al ámbito de la resiliencia urbana empieza por iniciar conversaciones entre los vulcanólogos, especialmente los de los observatorios, y los responsables de la resiliencia de las ciudades.

La transferencia de las enseñanzas de la vulcanología al ámbito de la resiliencia urbana empieza por iniciar conversaciones entre los vulcanólogos, especialmente los de los observatorios, y los responsables de la resiliencia de las ciudades. Una de las principales motivaciones de este artículo es el reconocimiento de que estos grupos rara vez tienen la oportunidad de interactuar. (De hecho, no está claro dónde es más probable que un artículo como éste sea visto por ambos grupos). Desde 1998, la Asociación Internacional de Vulcanología y Química del Interior de la Tierra ha organizado 12 conferencias de Ciudades sobre Volcanes (CoV) en ciudades (como Portland) que se han visto o podrían verse afectadas por erupciones de volcanes cercanos. Sin embargo, en estas reuniones se han tratado casi exclusivamente los riesgos volcánicos; rara vez asisten representantes de ciudades no volcánicas y responsables de la resiliencia centrados en las amenazas climáticas.

El tipo de conversaciones que se necesitan podrían organizarse en el marco de una futura conferencia similar a la de CoV si se invitara a los responsables de resiliencia. La AGU podría patrocinar una conferencia de este tipo. Del mismo modo, el Banco Mundial (que promueve desde hace tiempo el intercambio mundial de información relacionada con la sostenibilidad urbana), la red MetroLab (una organización estadounidense que reúne a ciudades y universidades que estudian y aplican estrategias de resiliencia urbana) o fundaciones que apoyan la acción climática en las ciudades podrían actuar como anfitriones. Las Asociaciones para la Adaptación al Clima de la NOAA, que ofrecen investigación climática regional de alta calidad y están estableciendo relaciones duraderas con los responsables políticos locales, podrían ser un valioso colaborador en estos debates.

En este contexto, los vulcanólogos podrían explicar a los responsables de la resiliencia urbana cómo filtran y adaptan los conocimientos sobre un fenómeno mundial a las condiciones específicas de cada volcán, y cómo se comunican con las poblaciones locales para satisfacer sus necesidades concretas de seguridad. Estos debates podrían revelar ideas que preparen mejor a los gobiernos urbanos y a sus residentes para los peligros climáticos cada vez más peligrosos que se avecinan.

Referencias

Affolderbach, J., and C. Schulz (2017), Positioning Vancouver through urban sustainability strategies? The Greenest City 2020 Action Plan, J. Cleaner Prod., 164, 676–685, https://doi.org/10.1016/j.jclepro.2017.06.234.

Anguelovski, I., E. Chu, and J. Carmin (2014), Variations in approaches to urban climate adaptation: Experiences and experimentation from the Global South, Global Environ. Change, 27, 156–167, https://doi.org/10.1016/j.gloenvcha.2014.05.010.

Fink, J., and I. Ajibade (2022), Future impacts of climate-induced compound disasters on volcano hazard assessment, Bull. Volcanol., 84, 42, https://doi.org/10.1007/s00445-022-01542-y.

Hepinstall-Cymerman, J., S. Coe, and L. R. Hutyra (2011), Urban growth patterns and growth management boundaries in the central Puget Sound, Washington, 1986–2007, Urban Ecosyst., 16, 109–129, https://doi.org/10.1007/s11252-011-0206-3.

Lowenstern, J. B., J. W. Ewert, and A. B. Lockhart (2022), Strengthening local volcano observatories through global collaborations, Bull. Volcanol., 84, 10, https://doi.org/10.1007/s00445-021-01512-w.

Naef, P. (2022), “100 resilient cities”: Addressing urban violence and creating a world of ordinary resilient cities, Ann. Am. Assoc. Geogr., 112, 2,012–2,027, https://doi.org/10.1080/24694452.2022.2038069.

Nelson, A. C., and T. Moore (1993), Assessing urban growth management: The case of Portland, Oregon, the USA’s largest urban growth boundary, Land Use Policy, 10, 293–302, https://doi.org/10.1016/0264-8377(93)90039-D.

Rutland, T., and A. Aylett (2008), The work of policy: Actor networks, governmentality, and local action on climate change in Portland, Oregon, Environ. Plann. D Soc. Space, 26, 627–646, https://doi.org/10.1068/d6907.

Solana, M. C., C. R. J. Kilburn, and G. Rolandi (2008), Communicating eruption and hazard forecasts on Vesuvius, southern Italy, J. Volcanol. Geotherm. Res., 172, 308–314, https://doi.org/10.1016/j.jvolgeores.2007.12.027.

Tibaldi, A., et al. (2020), Real world–based immersive virtual reality for research, teaching and communication in volcanology, Bull. Volcanol., 82, 38, https://doi.org/10.1007/s00445-020-01376-6.

Voight, B. (1990), The 1985 Nevado del Ruiz volcano catastrophe: Anatomy and retrospection, J. Volcanol. Geotherm. Res., 44, 349–386, https://doi.org/10.1016/0377-0273(90)90027-D.

Datos del autor

Jonathan Fink (jon.fink@pdx.edu), Department of Geology, Portland State University, Ore.; also at Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada; and Michael Armstrong, City Scale, Portland, Ore.

This translation by Saúl A. Villafañe-Barajas (@villafanne) was made possible by a partnership with Planeteando and Geolatinas. Esta traducción fue posible gracias a una asociación con Planeteando y Geolatinas.

Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Better Monitoring is Needed for Climate Change in the Upper Atmosphere 

Thu, 03/27/2025 - 12:00
Editors’ Highlights are summaries of recent papers by AGU’s journal editors. Source: AGU Advances Observed trends in several key upper atmospheric variables showing significant trends relative to the changing climate, including the thermospheric density ratio (defines the state of the thermosphere), the Chilton foF2 trend (characterizes the state of the ionosphere), the contraction of the mesosphere, and the 10 hPa stratospheric temperature, together with the trend in the carbon dioxide (CO2) concentration and the variation in solar activity, expressed through the 10.7 centimeter radio flux (F10.7) solar activity proxy index. Credit: Añel et al. [2025], Figure 1

Greenhouse gas emissions are making the middle and upper parts of the atmosphere cooler, which leads to a series of important changes. The cooling causes the atmosphere to shrink, affecting its structure, including the stratosphere and the density of the thermosphere. A thinner thermosphere means that satellites and debris in low Earth orbit stay up longer, increasing the risk of collisions. These changes also affect radio signals and GPS systems.

Unfortunately, as Añel et al. [2025] discuss, we do not have enough accurate long-term data to fully understand the impacts on this part of the atmosphere, and the situation is getting worse due to fewer observations. Improved monitoring of Earth’s upper atmospheric layers has many benefits, such as contributing to reducing the large uncertainty in estimates of the aerosol burden from volcanic eruptions and a better understanding of polar mesospheric clouds, which are increasing due to greenhouse gases.

Citation: Añel, J. A., Cnossen, I., Antuña-Marrero, J. C., Beig, G., Brown, M. K., Doornbos, E., et al. (2025). The need for better monitoring of climate change in the middle and upper atmosphere. AGU Advances, 6, e2024AV001465. https://doi.org/10.1029/2024AV001465

—Don Wuebbles, Editor, AGU Advances

Text © 2024. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

The 24 May 2024 landslide at Yambali in Papua New Guinea

Thu, 03/27/2025 - 07:57

The Landslide Blog is written by Dave Petley, who is widely recognized as a world leader in the study and management of landslides.

On 24 May 2024 at 2:56 am local time, a catastrophic landslide occurred close to Yambali in Enga Province, Papua New Guinea, at: [-5.382, 143.365]. I wrote about this rockslide at the time, and it generated considerable media interest. The site is hard to access, so details have been hard to track down.

There is a good new paper (Li et al. 2025) in the journal Landslides, sadly behind a paywall (but the contact details of the first author are in the link above), which provides an initial review of the event.

One of the reasons that this landslide attracted so much attention was the reported loss of life, which in some cases was up to 2,000 people. As I noted at the time, this was highly unlikely in a rural area. Li et al. (2025) have mapped the houses destroyed by the event (n=29), suggesting that the likely loss of life was in the region of 200.

Whilst it was spectacular, the landslide at Yambali was not huge – Li et al. (2025) have measured the runout distance as 520 m, with a maximum width of 140 m. The volume was about 500,000 m3. The failure occurred on a steep slope that is bisected by a fault, consisting of “relatively low-strength, highly weathered quartz sandstone and limestone”. The authors note that there were smaller failures on the slope before the main event, suggesting that this was a progressive event. No direct trigger has been identified, but the six months period before the failure occurred had unusually high levels of precipitation.

The international interest in this landslide has now ebbed away, leaving the local population to deal with the aftermath. The Planet image below, captured last week, shows the site:-

Planet image of the 24 May 2024 landslide near to Yambali in Papua New Guinea. Image copyright Planet, used with permission. Image dated 18 March 2025.

A new road has been constructed to bypass the site, presumably to reopen access to the mine. Unfortunately, this is likely to leave those living along the original alignment even more isolated than before.

Reference

Li, Z., Li, W., Xu, Q. et al. 2025. Brief report on the catastrophic landslide in Papua New Guinea on May 24, 2024Landslides. https://doi.org/10.1007/s10346-025-02511-0

Planet Team 2025. Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. https://www.planet.com/

Return to The Landslide Blog homepage Text © 2023. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

NIH Cancels Climate and Health Research Grants

Wed, 03/26/2025 - 16:19
body {background-color: #D2D1D5;} Research & Developments is a blog for brief updates that provide context for the flurry of news regarding law and policy changes that impact science and scientists today.

The Trump administration’s intentions toward addressing climate change are clear: Federal agencies purged mentions of the climate crisis from their websites and slashed funding for mitigation tools such as the Future Risk Index. Now, those intentions are extending to health research: The National Institutes of Health (NIH) has begun to cancel funding for investigations into the health effects of climate change, and will not financially support new research on the subject, according to ProPublica and Nature.

 
Related

NIH is the largest public funder of biomedical research in the world. Every year, the agency is responsible for awarding nearly $48 billion in grants for investigations into everything from cancer cures to avian flu, as well as climate change.

Documents sent to Nature on 25 March direct grants management staff at NIH to halt funding, including issuing future, already-awarded grant dollars, to any projects that are “no longer an NIH/HHS priority,” including research related to climate change. The documents also direct the NIH to halt grants for research related to COVID-19, “now that the pandemic is over.” The cuts to COVID-19 research—including cuts to projects meant to develop antiviral drugs—come as the administration also plans to end its funding for Gavi, an international program that purchases vaccines for children in developing countries. Gavi estimates that the loss of U.S. support may cause the deaths of more than 1 million children who will not receive routine vaccinations.

Climate change is a major threat to public health, according to international agencies such as the World Health Organization. A warming world increases risks of heat-related illness, disease, malnutrition, and injury, which often disproportionately affect already-vulnerable populations. Funding cuts to research on climate and health hinders scientists’ ability to understand these threats. 

COVID-19, environmental health, and climate change are linked—studies show that those living in air pollution hotspots face an increased likelihood of death from COVID-19, as do those living near fossil fuel production facilities

Halting funding for climate and health research “is an agenda item for the fossil fuel industry, and this administration is doing what the fossil fuel industry wants,” Lisa Patel, executive director of the Medical Society Consortium on Climate & Health, told ProPublica.

A now-offline NIH report from 2024 detailed some of the NIH-funded climate projects that may now be under threat, such as research to understand the health impacts of the Maui wildfires, a project meant to expand the capacity of public health systems to respond to climate disasters in Appalachia, and an initiative to promote public health in Alaska Native communities facing climate health concerns.

—Grace van Deelen (@gvd.bsky.social), Staff Writer

These updates are made possible through information from the scientific community. Do you have a story about how changes in law or policy are affecting scientists or research? Send us a tip at eos@agu.org. Text © 2024. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Forecasting the Future of Southern Ocean Ecosystems

Wed, 03/26/2025 - 13:21
Source: Earth’s Future

Ecosystems in the Southern Ocean, the body of water surrounding Antarctica, are under threat from climate change. The area’s inhabitants, from whales to krill to phytoplankton, face changes such as a loss in sea ice and rising ocean temperatures. If species that are unique to the area, such as the Antarctic toothfish, dwindle in population as a result, this decrease could affect fishery operations and lead to cascading socioeconomic and geopolitical consequences.

Scientists use marine ecosystem models to understand how fragile regions such as the Southern Ocean will respond to changing climate, as well as to develop management and conservation plans. The Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) combines results from an ensemble of marine ecosystem models, but it includes relatively few models that focus on the Southern Ocean. Though scientists have made progress in understanding this area’s food webs and biogeochemical processes in the past decade, work remains to be done on assessing how the ecosystem may evolve under different climate change scenarios.

Murphy et al. are developing a new suite of models to complement FishMIP called the Southern Ocean Marine Ecosystem Model Ensemble (SOMEME). By consulting experts in fields such as ocean and biogeochemical modeling, the team determined that the variables used across FishMIP (sea surface temperature, sea ice concentration, and phytoplankton biomass) made it a sufficient framework for their new suite. The SOMEME effort seeks to address some of the gaps in FishMIP by better representing regional elements, including sea ice, species such as Antarctic krill, the historical impacts of whaling, and the connections between fisheries and climate.

These additions will help scientists understand how climate change can affect the region and how those effects can be mitigated, the researchers say. The team expects the model will grow more capable as they incorporate artificial intelligence into the approach and as the project gains more collaborators. (Earth’s Future, https://doi.org/10.1029/2024EF004849, 2025)

—Rebecca Owen (@beccapox.bluesky.social), Science Writer

Citation: Owen, R. (2025), Forecasting the future of Southern Ocean ecosystems, Eos, 106, https://doi.org/10.1029/2025EO250086. Published on 26 March 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Buried Sediments Point to an Ancient Ocean on Mars

Wed, 03/26/2025 - 13:20

From alluvial fans to lake beds, Mars has no shortage of surface features that were clearly sculpted by flowing water. But evidence of a planetary-scale body of water on the Red Planet—that is, an ocean—has been comparatively lacking.

Now, researchers have analyzed radar data collected by a Mars rover and found buried sediments arranged much in the same way as terrestrial coastal deposits. The discovery is evidence that an ancient ocean once persisted over much of the Red Planet’s northern hemisphere, according to the team.

“We can generate a profile of the subsurface structure.”

In 2021, China’s Tianwen-1 spacecraft touched down on Mars’s northern hemisphere in the Utopia Planitia region. Its payload, the 250-kilogram Zhurong rover, spent the next 12 months making a 1,921-meter traverse of Mars’s northern lowlands. Some of the data the rover collected included ground-penetrating radar measurements.

Ground-penetrating radar works by directing electromagnetic waves into the ground and measuring at what depths they’re reflected by boundaries between different materials. It’s commonly used by geoscientists on Earth to map buried layers of sediment and is also used by archaeologists to find buried artifacts.

“It allows us to see beneath the Martian surface,” said Hai Liu, a geophysicist at Guangzhou University in China. “We can generate a profile of the subsurface structure.” Liu and his graduate student Jianhui Li, also a geophysicist at Guangzhou University, coled the new research.

A Layer Cake, but Tilted

The team used the method to probe up to tens of meters below the Martian surface. The data revealed layers of sedimentary deposits that were tilted, like a partially collapsed layer cake. The tilt ranged from about 6° to 20°, sloping down to the north. That level of tilting, and its consistent orientation revealed over much of Zhurong’s largely southward traverse, suggests that the region was once home to a coastline, the researchers concluded.

The angle at which sediment builds up on a coast is determined by how far waves and tides travel inland. (Martian tides would have been largely driven by the Sun; its two moons, Phobos and Deimos, are far too small to exert much of a tidal force.)

The slopes of coastal sedimentary deposits on Earth are similar, Li, Liu, and their colleagues showed.

Shorelines Here and There

The idea that Mars once hosted an ocean isn’t new—data from spacecraft orbiting the planet have revealed surface features consistent with shorelines roughly 300 kilometers south of Zhurong’s location. (Some research has called those findings into question, however.) And one way of explaining the so-called Martian dichotomy—the stark difference in elevation, cratering, and crustal thickness between the planet’s northern lowlands and southern highlands—is that much of the northern hemisphere was once under water.

If an ocean did once cover much of Mars’s northern hemisphere, it must have retreated over time given that the Red Planet is a dry and dusty world today. That shrinking ocean would have left imprints of successive generations of coastlines north of its southernmost reach, said Abdallah Zaki, a geomorphologist at the Jackson School of Geosciences at the University of Texas at Austin who was not involved in the research.

Because Zhurong explored an area that might have once been a shoreline, it’s logical for the rover to have spotted coastal deposits, said Zaki, who studies landscapes shaped by water on both Earth and Mars. “It makes sense.”

It’s unlikely that a smaller body of water such as a lake could have produced these deposits, Li, Liu, and their colleagues concluded. Lakes experience only limited tides, and their waves tend to be much smaller than those in oceans. The tilt sediments around lakes therefore tend to be significantly shallower than what the team measured.

These results were published in the Proceedings of the National Academy of Sciences of the United States of America.

Going Underground

If there was once an ocean on Mars, future datasets could answer an important question: Where did all the water go? It’s likely that some evaporated and was lost to space, but some of it could still be lurking under the Martian surface.

“A lot of it could have moved underground,” said Michael Manga, a planetary scientist at the University of California, Berkeley and a member of the research team. Last year, Manga and his colleagues published a study in which they used seismic data from the InSight lander on Mars to constrain the amount of water potentially permeating subsurface rocks. The team concluded that it was a lot, enough to cover the entirety of Mars to a depth of 1–2 kilometers.

“We need to get more subsurface data.”

Continuing to explore what lies beneath Mars’s surface is critical to understanding how the Red Planet was influenced by water, Zaki said. “We need to get more subsurface data.”

Zaki and other researchers are looking forward to the European Space Agency’s upcoming launch of the ExoMars mission, which will include a rover known as Rosalind Franklin. The roughly 300-kilogram rover, named for the scientist who codiscovered DNA’s double-helix structure, will be equipped with ground-penetrating radar and a 2-meter drill.

—Katherine Kornei (@KatherineKornei), Science Writer

Citation: Kornei, K. (2025), Buried sediments point to an ancient ocean on Mars, Eos, 106, https://doi.org/10.1029/2025EO250115. Published on 26 March 2025. Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Peatland Plantations in Southeast Asia are Carbon Hotspots

Wed, 03/26/2025 - 12:37
Editors’ Highlights are summaries of recent papers by AGU’s journal editors. Source: Geophysical Research Letters

Approximately 41% of Southeast Asia’s peatland forests were impacted by land-use change, and conversion to tree plantations is one of the most common practices. However, data on the altered greenhouse gas production and emissions in these systems remain extremely limited.

Taillardat et al. [2025] measure the concentration, composition, and age of carbon in water and soil at an industrial, short-rotation Acacia plantation in peatland areas of Sumatra, Indonesia. Exceptionally high levels of dissolved organic carbon, carbon dioxide, and methane were found in porewater and drainage networks, indicating that these plantations are carbon hotspots. This was century-old carbon in the water, highlighting the combination of both high productivity and exposure of old carbon-dense substrates to exposure in a plantation setting.  

Citation: Taillardat, P., Moore, J., Sasmito, S., Evans, C. D., Alfina, T., Lok, S., et al. (2025). Methane and carbon dioxide production and emission pathways in the belowground and draining water bodies of a tropical peatland plantation forest. Geophysical Research Letters, 52, e2024GL112903. https://doi.org/10.1029/2024GL112903

—Valeriy Ivanov, Editor, Geophysical Research Letters

Text © 2024. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer