Feed aggregator

Summer Convective Precipitation Changes Over the Great Lakes Region Under a Warming Scenario

JGR–Atmospheres - Mon, 07/29/2024 - 17:34
Abstract

To understand future summer precipitation changes over the Great Lakes Region (GLR), we performed an ensemble of regional climate simulations through the Pseudo-Global Warming (PGW) approach. We found that different types of convective precipitation respond differently to the PGW signal. Isolated deep convection (IDC), usually concentrated in the southern domain, shows an increase in precipitation to the north of the GLR. Mesoscale convective systems (MCSs), usually concentrated upwind of the GLR, shift to the downwind region with increased precipitation. Thermodynamic variables such as convective available potential energy (CAPE) and convective inhibition energy (CIN) are found to increase across almost the entire studied domain, creating a potential environment more favorable for stronger convection systems and less favorable for weaker ones. Meanwhile, changes in the lifting condensation level (LCL) and level of free convection (LFC) show a strong correlation with variations in convective precipitation, highlighting the significance of these thermodynamic factors in controlling precipitation over the domain. Our results indicate that the decrease in LCL and LCF in areas with increased convective precipitation is mainly due to increased atmospheric moisture. In response to the prescribed warming perturbation, MCSs occur more frequently downwind, while localized IDCs exhibit more intense rain rates, longer durations, and larger rainfall area.

Ion Precipitation Into Io's Poles Driven by a Strong Sub‐Alfvénic Interaction

GRL - Mon, 07/29/2024 - 17:24
Abstract

Juno performed two close flybys of Io and found enhanced field-aligned proton fluxes are absorbed by Io. These protons are absorbed at mass input rates comparable to previous estimates for hydrogen losses from Io, hence Jupiter is likely the source of hydrogen at Io. The conditions necessary for this to occur are: (a) formation of Alfvén waves at Io, (b) wave-particle coupling to energize protons, (c) anti-planetward transport of ions due to the magnetic mirror force and/or parallel acceleration, and (d) strong sub-Alfvénic interaction slowing the flow connected to Io's fluxtube allowing for sufficient travel time for energized ions to transit to Io. The derived slowdown of ≤12% the upstream value is linked to filamentation within the Alfvén wing. This mechanism is likely operating at all strongly interacting satellites and provides an avenue to transfer material from a planetary body to its satellites, including exoplanets and brown dwarfs.

Sub6 GHz Non‐Line‐of‐Sight Effects in Mobile Communications: A New Perspective for Rainfall Monitoring?

GRL - Mon, 07/29/2024 - 17:08
Abstract

Sub6 GHz non-line-of-sight signals are a potential opportunistic source of rainfall information that promises to improve the current urgent need regarding near-surface rainfall detection, but the complex mechanisms in which these signals are impacted by rainfall have hindered further development in this area. In this study, we focus on four types of microwave propagation processes to explore the theoretical basis for Sub6 GHz signal sensitivity to rainfall. We also investigate how these signals change during rainy conditions using a cellphone signal recording experiment. The results demonstrate that the indirect effect of rainfall-induced changes in the interfacial water film may significantly affect the Sub6 GHz signal, making it an opportunity to reflect rainfall information. Finally, we offer a comprehensive overview of the potential challenges, benefits, and drawbacks of low-frequency non-line-of-sight links in the context of rainfall inversion.

An Alternative Similar Tropical Cyclone Identification Algorithm for Statistical TC Rainfall Prediction in the Western North Pacific

JGR–Atmospheres - Mon, 07/29/2024 - 16:29
Abstract

Improving tropical cyclone (TC) rainfall prediction is vital as climate change has led to an increase in TC rainfall rates. Enhanced reliability in predicting TC tracks has paved the way for statistical methodologies to make use of them in estimating current TC rainfall, achieved by identifying similar past TC tracks and obtaining their corresponding rainfall data. While the Fuzzy C Means (FCM) clustering algorithm is widely used, it has limitations stemming from its clustering-centric design, hindering its ability to pinpoint the most appropriate similar TCs. Our study introduces the Sinkhorn distance, a novel similarity metric that measures the cost of transforming one set of data to another, for assessing TC similarity in rainfall prediction. Our findings indicate that utilizing Sinkhorn distance enhances the accuracy of TC rainfall predictions across the Western North Pacific region. When compared to the conventional approach using FCM, our Sinkhorn distance-based methodology yields slightly better yet statistically significant results. The improvement is due to better identification of similar TCs, characterized by closer proximity of similar TC tracks to the target TC track, facilitated by Sinkhorn distance. This underscores how minor differences in TC track can alter rainfall distribution, emphasizing the critical importance of accurate track prediction in rainfall prediction and the need to reconsider how we categorize TCs together, which can have implications for climate and atmospheric sciences. Collectively, the inclusion of Sinkhorn distance stands as a valuable addition to our toolkit for discerning similar TC tracks, thus elevating the accuracy of TC rainfall predictions.

New reconstruction shows low Artic sea ice cover in mid-20th century

Phys.org: Earth science - Mon, 07/29/2024 - 16:02
An international research team presented a new reconstruction of past Arctic sea ice that revealed low levels of sea ice coverage in the 1940s.

A novel, balloon-borne UV–Vis spectrometer for direct sun measurements of stratospheric bromine

Atmos. Meas. techniques - Mon, 07/29/2024 - 15:45
A novel, balloon-borne UV–Vis spectrometer for direct sun measurements of stratospheric bromine
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz
Atmos. Meas. Tech., 17, 4507–4528, https://doi.org/10.5194/amt-17-4507-2024, 2024
A novel balloon-borne instrument for direct sun and solar occultation measurements of several UV–Vis absorbing gases (e.g. O3, NO2, BrO, IO, and HONO) is described. Its major design features and performance during two stratospheric deployments are discussed. From the measured overhead BrO concentration and a suitable photochemical correction, total stratospheric bromine is inferred to (17.5 ± 2.2) ppt in air masses which entered the stratosphere around early 2017 ± 1 year.

On Path Length, Beam Divergence, and Retroreflector Array Size in Open-Path FTIR Spectroscopy

Atmos. Meas. techniques - Mon, 07/29/2024 - 15:45
On Path Length, Beam Divergence, and Retroreflector Array Size in Open-Path FTIR Spectroscopy
Cameron E. N. Power and Aldona Wiacek
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-97,2024
Preprint under review for AMT (discussion: open, 0 comments)
The choice of path length and retroreflector array size in open-path FTIR spectroscopy must be made with care.  Longer paths increase target gas absorption (lowering detection limits) and larger retroreflector arrays improve the SNR of spectra by increasing the return signal (improving retrieved concentration precision), but there are limitations to both.  An optimum array size and path combination exists in each specific observational environment and application, as explored in this work.

Sustained Co‐Eruptive Increase in Seismic Velocity Below Great Sitkin Volcano Due To Magma Extrusion

GRL - Mon, 07/29/2024 - 15:38
Abstract

Volcanic eruptions carry essential information on the dynamics of volcanic systems. Studies have documented variable eruption styles and eruptive surface deformation. However, co-eruptive subsurface structural changes remain poorly understood. Here we characterize the seismic velocity changes from July 2019 to July 2023 at Great Sitkin Volcano in the central Aleutian volcanic arc, using single-station ambient noise interferometry at five three-component seismic stations. Coincident with the lava effusion since late July 2021, about two months after the explosive eruption on 26 May 2021, we observe a sustained velocity increase, most prominently to the northwest of the caldera. We attribute this velocity increase to the structural changes with magma extrusion, with the spatial variation controlled by the geometry of the magma system or the property of shallow volcaniclastics. Our findings offer insights into understanding co-eruptive structural modifications at active volcanoes.

Issue Information

GRL - Mon, 07/29/2024 - 15:38

No abstract is available for this article.

A blue miracle in the Eifel: How sapphires formed in volcanoes

Phys.org: Earth science - Mon, 07/29/2024 - 15:13
Researchers at Heidelberg University are studying the formation of this characteristically blue-colored crystal in volcanic melts

Has it really stopped? Interplay between rheology, topography and mesh resolution in numerical modelling of snow avalanches

Natural Hazards and Earth System Sciences - Mon, 07/29/2024 - 15:00
Has it really stopped? Interplay between rheology, topography and mesh resolution in numerical modelling of snow avalanches
Saoirse Robin Goodwin, Thierry Faug, and Guillaume Chambon
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-123,2024
Preprint under review for NHESS (discussion: open, 0 comments)
This paper considers how we can objectivity define stoppage of numerically-modelled snow avalanches. When modelling real topographies, numerically-modelled avalanche snow velocities typically do not converge to 0, so stoppage is defined with arbitrary criteria, which must be tuned on a case-by-case basis. We propose a new objective arrest criterion based on local flow properties, in tandem with a newly-implemented physical yielding criterion. 

Comparative Analysis of μ (I) and Voellmy-Type Grain Flow Rheologies in Geophysical Mass Flows: Insights from Theoretical and Real Case Studies

Natural Hazards and Earth System Sciences - Mon, 07/29/2024 - 15:00
Comparative Analysis of μ (I) and Voellmy-Type Grain Flow Rheologies in Geophysical Mass Flows: Insights from Theoretical and Real Case Studies
Yu Zhuang, Brian W. McArdell, and Perry Bartelt
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-87,2024
Preprint under review for NHESS (discussion: open, 0 comments)
This study reformulates the μ(I) rheology into a Voellmy-type relationship to elucidate its physical implications. The μ(I) rheology, incorporating a dimensionless inertial number, mimics granular temperature effects, reflecting shear thinning behavior of mass flows. However, its constant Coulomb friction coefficient limits accuracy in modeling deposition. Comparing μ(I) with Voellmy-type rheologies reveals strengths and limitations, enhancing mass flow modeling and engineering applications.

Historical research finds Britain's 1987 hurricane exposed growing separation from nature

Phys.org: Earth science - Mon, 07/29/2024 - 13:30
The historic hurricane of October 1987 that wrought devastation to households across the South and East of Britain exposed a range of anxieties and fears in people and an increasing sense of separation from nature.

CH4 Inclusions in High‐Pressure Metapelite: Revealing the Link Between Fluid Behavior and Redox Mechanisms for Subducting Sedimentary Carbon

JGR–Solid Earth - Mon, 07/29/2024 - 13:00
Abstract

(Ultra)high-pressure metamorphic rocks provide valuable insights into the properties of slab-derived fluids. Here, we report CH4-rich fluid inclusions in garnet of a metapelite from the Zermatt-Saas ophiolite, western Alps. Two types of metapelite, a CH4-bearing pelitic schist and a calcareous pelitic schist, were investigated to unravel favorable P-T-fO2 conditions for preservation of CH4 in high-pressure metapelite. In the CH4-bearing pelitic schist, CH4-rich fluid inclusions exclusively occur in the core of garnet (GrtI) rather than the rim (GrtII). GrtI records P-T conditions of ∼2.85 GPa and ∼555°C, whereas GrtII records a prograde P-T path from ∼1.75 GPa at 510°C to ∼2.0 GPa at 530°C. Compositional profile of garnet in the calcareous pelitic schist reflects a prograde metamorphic path from ∼1.9 GPa at 510°C to ∼2.12 GPa at 545°C. CH4-rich fluid formation may primarily rise from graphite reduction at high-pressure reduced conditions (ΔFMQ −3.5 to −4, 2.85 GPa, ∼550°C), while graphite and carbonates stabilize in a relatively oxidized environment (ΔFMQ ∼0, 2.12 GPa, 545°C). The initial redox budget of subducted sediments is primarily controlled by the amount of sedimentary carbonate and organic carbon, which plays the most important role in deciding the carbon speciation at different subduction depths. CH4 formation in COH fluids could primarily be attributed to the reduction of graphite. Subducted metasediments act as conduits for transporting non-oxidized fluids to arc magmas, which provides crucial evidence to support the heterogeneity for slab-derived COH fluids and offers new insights into the deep carbon cycle.

Issue Information

JGR–Solid Earth - Mon, 07/29/2024 - 12:50

No abstract is available for this article.

Localization of Deformation on Faults Driven by Fluids During the L’Aquila 2009 Earthquake

JGR–Solid Earth - Mon, 07/29/2024 - 12:49
Abstract

Coseismic rupture and aftershock development on a fault plane are complex and heterogeneous processes. The M w 6.1 L’Aquila 2009 normal faulting earthquake is a perfect case to explore how fault geometry and rheology influence the rupture process and aftershocks distribution. In this study, we use for the first time a dense set of earthquake data to obtain enhanced images of the causative normal fault structure to the kilometer scale. The hypocenter of the emergent onset of the mainshock took place within a low V p/V s volume, while the large coseismic slip occurred a few kilometers above, as the rupture propagated through a high V p and high V p/V s fluid-filled rock volume. The increase of V p/V s in the fault hanging wall during the sequence suggests a strong dehydration in the earthquake asperity, with an upward fluid pressure migration along the fault toward the host rock volume. We propose that the localization of deformation on the fault plane is favored by high fluid pressure, while the spreading of aftershocks on a wide volume around the fault is driven by the depletion of fluids from the slipped portion of the fault plane and migration to small segments within the fault host rocks.

Can high-altitude balloons help predict wildfires?

Phys.org: Earth science - Mon, 07/29/2024 - 09:46
Schmid College of Science and Technology Associate Professor Joshua Fisher is a co-investigator on a groundbreaking three-year project, which, led by the stratospheric and remote sensing company Urban Sky, aims to predict and manage wildfires.

New data-driven map reveals extensive peatlands in Amazon Basin

Phys.org: Earth science - Mon, 07/29/2024 - 09:31
A consortium of researchers led by the University of St Andrews, Scotland, and Charles University, Prague have developed a new data-driven map which predicts substantially more peatland area in the Amazon basin than previously estimated. The high-resolution map provides the first field-data-driven extent of peatlands in the Amazon basin and will be useful for future research and policy on the vulnerability of peatlands to climate change and human impacts.

The Frictional‐Viscous Transition in Experimentally Deformed Granitoid Fault Gouge

JGR–Solid Earth - Mon, 07/29/2024 - 07:00
Abstract

In crustal faults dominated by granitoid gouges, the frictional-viscous transition marks a significant change in strength constraining the lower depth limit of the seismogenic zone. Dissolution-precipitation creep (DPC) may play an important role in initiating this transition, especially within polymineralic materials. Yet, it remains unclear to what extent DPC contributes to the weakening of granitoid gouge materials at the transition. Here we conducted sliding experiments on wet granitoid gouges to large displacement (15 mm), at an effective normal stress and pore fluid pressure of 100 MPa, at temperatures of 20–650°C, and at sliding velocities of 0.1–100 μm/s, which are relevant for earthquake nucleation. Gouge shear strengths were generally ∼75 MPa even at temperatures up to 650°C and at velocities >1 μm/s. At velocities ≤1 μm/s, strengths decreased at temperatures ≥450°C, reaching a minimum of 37 MPa at the highest temperature and lowest velocity condition. Microstructural observations showed that, as the gouges weakened, the strain localized into thin, dense, and ultrafine-grained (≤1 μm) principal slip zones, where nanopores were located along grain contacts and contained minute biotite-quartz-feldspar precipitates. The stress sensitivity exponent n decreased from a large number at 20°C to ∼2.2 at 650°C at the lowest velocities. These findings suggest that high temperature, slow velocity and small grain sizes promote DPC-accommodated granular flow over cataclastic frictional granular flow, leading to the observed weakening and strain localization. Field observations together with extrapolation suggest that DPC-induced weakening occurs at depths of 7–20 km depending on geothermal gradient.

Packet Duplication for Improving Throughput of the Multi-Link Devices in Wi-Fi 7 Networks

Abstract—Multi-link operation (MLO) is one of the main innovations of the upcoming IEEE 802.11be standard. MLO uses a common sliding window for all links to control the delivery of packets. Due to the finiteness of the sliding window, transmission of packets on one link may result in packet shortages on other links, reducing throughput. To avoid it, an aggregation algorithm is required that selects the number and packets to be transmitted. In this paper, the known algorithms are extended by sending duplicates. Simulations have confirmed that duplicates can increase the Multi-Link Device (MLD) throughput by accelerating the sliding window progression.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer