Feed aggregator

Comparing Discrete and Empirical Troposphere Delay Models: A Global IGS‐Based Evaluation

Radio Science - Sat, 06/15/2024 - 07:00
Abstract

Zenith tropospheric delay (ZTD) is an important atmospheric parameter in radio-space-geodetic techniques such as Global Navigation Satellite System (GNSS), which is pivotal for GNSS positioning, navigation and meteorology. The Vienna Mapping Function (VMF) data server is a widely utilized source for implementing ZTD, offering two types of models, that is, the empirical one and the discrete one with Grid-wise and Site-wise models. Therefore, to evaluate the accuracy of these models becomes the focus of this article. Specifically, this study investigates their performances in terms of calculation of ZTD, using the hourly values derived from the International GNSS Service data as references. The results show that the root mean square err (RMSE) of the Site-wise, Grid-wise and global pressure and temperature 3 model are 11.71/13.03/38.56 mm, respectively, indicating the discrete model performs generally better than the empirical model, and the Site-wise model is the better of the two discrete models. From the perspective of spatial resolution, the performance of these three models in ZTD calculation shows obvious influences of latitude changes and elevation differences. From the temporal analysis, the accuracy of the discrete model shows differences over different UTC epochs, while the empirical model can only express the seasonal ZTD characteristics with the average RMSE at different epochs being similar, the specifically values are 39.67, 39.26, 39.38 and 39.18 mm at UTC 0:00, 6:00, 12:00 and 18:00, respectively. The histogram and boxplot well indicate the accuracy differences of the three models in different seasons. Additionally, the time series of three models at different latitudes were also explored in this research. These explorations are conducive to the selection of appropriate models for calculating ZTD based on specific requirements.

GLONASS-K2 signal analysis

GPS Solutions - Sat, 06/15/2024 - 00:00
Abstract

K2 is a new generation of GLONASS satellites that provides code division multiple access (CDMA) signals in the L1, L2 and L3 frequency bands in addition to legacy L1 and L2 signals based on frequency division multiple access (FDMA) modulation. The first GLONASS-K2 satellite was launched in August 2023 and started signal transmission in early September 2023. Based on measurements with a 30-m high-gain antenna, spectral characteristics of the various signal components are described and relative power levels are identified. A 3 dB (L1) to 4 dB (L2) higher total power is determined for the CDMA signal compared to the legacy FDMA signal and an equal power of the open service and secured CDMA signal components is found. The ranging code of the L2 channel for service information, which has not been publicly disclosed so far, is identified as a Gold code sequence consistent with the data channel of the L1 open service CDMA signal. The high-gain antenna measurements are complemented by tracking data from terrestrial receivers that enable a first assessment of user performance. An up to 50% improvement in terms of noise and multipath performance is demonstrated for the new L1 and L2 CDMA signals in comparison with their legacy counterpart, but no obvious differences between the different binary phase-shift keying and binary offset carrier modulations of the data and pilot components of these signals could be identified for the test stations. Triple-frequency carrier phase observations from L1, L2, and L3 CDMA signals exhibit good consistency at the noise and multipath level, except for small variations that can be attributed to slightly different antenna phase patterns on the individual frequencies. Overall, the new CDMA signals are expected to notably improve and facilitate precise point positioning applications once fully deployed across the GLONASS constellation.

Precise positioning utilizing smartphone GNSS/IMU integration with the combination of Galileo high accuracy service (HAS) corrections and broadcast ephemerides

GPS Solutions - Sat, 06/15/2024 - 00:00
Abstract

The Galileo High Accuracy Service (HAS) has undergone substantial development in recent years, offering users free access to GPS and Galileo satellite orbit, clock, and code bias corrections for Precise Point Positioning (PPP) on a global scale. This paper explores the use of the currently available HAS corrections for smartphone positioning. Due to hardware disparities and limited tracking capabilities, smartphone processing with only two GNSS constellations struggles to ensure satisfactory satellite geometry and sufficient observations in realistic user environments. To fully harness all observed measurements and the orbit and clock information directly disseminated from satellites, this study introduces a new PPP algorithm combing HAS corrections and broadcast ephemerides (HAS and BRDC PPP) for smartphone processing. Through four vehicle experiments in urban environments, the proposed HASandBRDC PPP solutions demonstrated a notable reduction in positioning errors. Specifically, the horizontal rms and 95th percentile error decreased from 2.0 and 3.3 m to 1.6 and 2.4 m, respectively, when compared to the HAS PPP solutions. These results are highly comparable to four-constellation PPP solutions utilizing Centre National d'Etudes Spatiales (CNES) ultra-rapid products, which can achieve a horizontal rms of 1.4 m. Additionally, the inclusion of smartphone inertial measurement unit (IMU) measurements results in a notable 59% average reduction in PPP gross errors. This study provides an original comparison of the 2022 and 2023 HAS corrections, demonstrating the feasibility of real-time lane-level navigation with smart devices even in remote areas without Internet connectivity, which has not been previously explored.

POSMind: developing a hierarchical GNSS/SINS post-processing service system for precise position and attitude determination

GPS Solutions - Sat, 06/15/2024 - 00:00
Abstract

The School of Geodesy and Geomatics at Wuhan University has developed a GNSS/SINS post-processing service system named POSMind. With the growing demand for mobile mapping in scientific and engineering applications, such as earth observation and high-precision mapping, there is a crucial need for efficient and accurate direct georeference based on GNSS/SINS integration. To accommodate diverse applications, an analysis of existing service forms was conducted, culminating the development of the hierarchical post-processing service system. This system consists of three service forms: module for interface calls, software for fine processing, and web for efficient cluster processing. POSMind has assimilated existing excellent methodologies and constructed a high-precision GNSS/SINS integration algorithm framework through theoretical derivations and experimental tests. Refinements have been introduced in several facets, including pre-processing, quality control, ambiguity resolution, and smoothing schemes. To assess the performance of POSMind, a series of experiments and analyses were conducted. The first experiment is conducted in open-sky environments (including carborne, airborne, and shipborne) to evaluate the consistency between POSMind and Inertial Explorer. Additionally, experiment under urban environments is carried out to assess the performance of POSMind in realistic cases. Moreover, the practical performance of POSMind was also demonstrated with two mobile mapping cases, with the evaluation of the accuracy of point cloud. Looking forward, we plan to enhance POSMind by introducing reliable filters or optimizers, integrating observations from other sensors and utilizing the benefits of post-processing in existing powerful GNSS/SINS processing platforms. The goal is to provide a powerful GNSS/SINS post-processing service that delivers high-precision, excellent availability, and utmost reliability for diverse scenes and applications. The POSMind web and software can be freely accessed at posmind-web.com and on Kaggle website at kaggle.com/datasets/fengzhusgg/smartpnt-pos.

Asymmetry in Uranus' High Energy Proton Radiation Belt

GRL - Fri, 06/14/2024 - 19:37
Abstract

Uranus is one of the least explored planets in our solar system, it exhibits a unique magnetic field structure which was observed by NASA's Voyager 2 mission nearly 50 years ago. Notably, Uranus displays extreme magnetic field asymmetry, a feature exclusive to the icy giants. We use the Boris algorithm to investigate how high energy protons behave within this unusual magnetic field, which is motivated by Voyager 2's observation of lower-than-expected high energy proton radiation belt intensities at Uranus. When considering full drift motions of high energy protons around Uranus, the azimuthal drift velocity can vary by as much as 15% around the planet. This results in areas around Uranus where particles will be more depleted (faster drift) and other regions where there is a surplus of particles (slower drift). This could provide a partial explanation for the “weak” proton radiation belts observed by Voyager 2.

Measuring Low Plasma Density in the Earth's Equatorial Magnetosphere From Magnetosonic Waves

GRL - Fri, 06/14/2024 - 19:34
Abstract

The plasma density is one of the most fundamental quantities of any plasma yet measuring it in space is exceptionally difficult when the density is low. Measurements from particle detectors are contaminated by spacecraft photoelectrons and methods using plasma wave emissions are hampered by natural plasma instabilities which dominate the wave spectrum. Here we present a new method which calculates the density from magnetosonic waves near the lower hybrid resonance frequency. The method works most effectively when the ratio of the plasma to cyclotron frequency is fpe/fce < 3.5. The method provides a lower bound on the plasma density. Using the new method we show that wave acceleration of electrons to relativistic energies is increased by orders of magnitude. The method enables years of satellite data to be re-analyzed for the Earth and the effectiveness of wave acceleration at the Earth, Jupiter and Saturn to be re-assessed.

Natural Structural Transition of Gas Hydrates From sI to sII in the Deep Seafloor

GRL - Fri, 06/14/2024 - 19:30
Abstract

The evolution of gas hydrates influenced by the seawater environment is unknown. We present a model of structural transformation from sI hydrate to sII hydrate due to the influence of seawater environment and vent fluid in nature through in situ experiments of gas hydrate formation in the Haima cold seep area. The in situ experimental results indicate that gas hydrates preferentially form as sI hydrates even in cold seep environments where C2+ hydrocarbons are present. During subsequent evolution, the sI hydrates could restructured at the effect of seawater environment and vent fluid, causing transformation to sII hydrates under the influence of hydrate stability. The supply of gas and direct contact with seawater environment are critical factors for structural transformation. Such structural transformation is the result of gas hydrates seeking thermodynamic stability and may be common in active cold seep areas.

High‐Frequency Ground Motions of Earthquakes Correlate With Fault Network Complexity

GRL - Fri, 06/14/2024 - 19:30
Abstract

Understanding the generation of damaging, high-frequency ground motions during earthquakes is essential both for fundamental science and for effective hazard preparation. Various theories exist regarding the origin of high-frequency ground motions, including the standard paradigm linked to slip heterogeneity on the rupture plane, and alternative perspectives associated with fault complexity. To assess these competing hypotheses, we measure ground motion amplitudes in different frequency bands for 3 ≤ M ≤ 5.8 earthquakes in Southern California and compare them to empirical ground motion models. We utilize a Bayesian inference technique called the Integrated Nested Laplace Approximation (INLA) to identify earthquake source regions that produce higher or lower ground motions than expected. Our analysis reveals a strong correlation between fault complexity measurements and the high-frequency ground motion event terms identified by INLA. These findings suggest that earthquakes on complex faults (or fault networks) lead to stronger-than-expected ground motions at high frequencies.

Cryospheric Excitation on the Earth's Chandler Wobble and Implications From a Warming World

GRL - Fri, 06/14/2024 - 19:17
Abstract

Leveraging Gravity Recovery and Climate Experiment mascon products spanning from April 2002 to September 2023, we, for the first time, ascertain the substantial influence of cryospheric mass variations on Earth's Chandler wobble (CW). Further, in contrast to traditional analysis conducted in the excitation domain, this study focuses on the polar motion domain and incorporates the wavelet analysis technique. Our findings reveal some intriguing phenomena: Between 2006 and 2020, the cryosphere contributed an average amplitude of approximately 4.85 mas to CW, equivalent to 5.05%, with its impact escalating to about 11 mas from 2018 to 2022, representing a fourfold rise in its contribution ratio to approximately 20%. This marked surge can be attributed to the more erratic glacier mass balance results from ongoing climate change. Moreover, there is a pronounced decrease in the CW signal post-2018, which starkly contrasts with cryospheric contribution, suggesting a potential linkage to climate change yet warrants further investigation.

Distinct Modulations of Northwest Pacific Tropical Cyclone Precipitation by Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation

GRL - Fri, 06/14/2024 - 19:14
Abstract

The interdecadal variability of tropical cyclone precipitation (TCP) over the western North Pacific (WNP) has not been thoroughly explored in previous studies. Here, we show that the TCP variations are modulated by both the Atlantic Multidecadal Oscillation (AMO) and Interdecadal Pacific Oscillation (IPO) as evidenced by reanalysis data and model experiments. A clustering analysis of tropical cyclone tracks shows that the AMO dominates a dipole pattern of TCP anomalies in the South China Sea and along the coastal eastern China. Meanwhile, the IPO dominates TCP over the southeastern WNP. Further analyses show that the AMO, particularly its extratropical component, affects TCP over the WNP by triggering an eastward-propagating Rossby-wave train, resulting in a pair of anomalous gyres over the WNP. Contrastly, the IPO modulates TCP by stimulating tropical circulation anomalies via the tropical pathway. These findings shed light on improving near-term TCP forecast and its regional influence on East Asia.

Retrieving Seismic Source Characteristics Using Seismic and Infrasound Data: The 2020 ML 4.1 Kiruna Minequake, Sweden

GRL - Fri, 06/14/2024 - 19:04
Abstract

A minequake of magnitude M L 4.1 occurred on 18 May 2020 early in the morning at the LKAB underground iron ore mine in Kiruna, Sweden. This is the largest mining-induced earthquake in Scandinavia. It generated acoustic signals observed at three infrasound arrays at 9.3 (KRIS, Sweden), 155 (IS37, Norway), and 286 km (ARCI, Norway) distance. We perform full-waveform focal mechanism inversion based on regional seismic data and local infrasound data. These independently highlight that this event was dominated by a shallow-depth collapse in agreement with in-mine seismic station data. However, regional infrasound data cannot inform the inversion process without an accurate model of atmospheric winds and temperatures. Yet, our numerical simulations demonstrate a potential of using local and regional infrasound data to constrain an event's focal mechanism and depth.

MMS Observations of Oscillating Energy Conversion and Electron Vorticity in an Electron‐Scale Layer Within a Southward Magnetopause Reconnection Exhaust

GRL - Fri, 06/14/2024 - 18:57
Abstract

The MMS satellites traversed a ∼6 di-wide and ∼500 km/s southward reconnection exhaust at the dayside magnetopause on 6 December 2015 and ∼29 di from the associated X-line region. A narrow ∼0.26–0.34 di layer of enhanced ±3.5 nW/m3 oscillating energy conversion perpendicular to the magnetic field resides in this exhaust. It contained two regions of diverging in-plane electric fields in general agreement with two clockwise electron flow vortices and a proposed increase of the electron vorticity ∇ × V e. The layer developed sunward of a unipolar Hall magnetic field for a duskward BM/BL ∼ 0.9 guide field. Each electron flow vortex supported a local ∆BM ∼ 10 nT strengthening of this Hall field. The presence of this electron-scale layer in a southward exhaust for a duskward guide field is consistent with a two-dimensional simulation of a similar structure that evolved from an X-line into a northward exhaust for a similar strength dawnward guide field.

Cenozoic Evolution of the Bohai Bay Basin: Constraints From Seismic Radial Anisotropy

GRL - Fri, 06/14/2024 - 18:53
Abstract

We obtain three-dimensional models of crustal shear-wave velocity and radial anisotropy in the Bohai Bay basin (BBB), revealing distinct radial anisotropy patterns. The western region of the basin exhibits pronounced positive crustal radial anisotropies, attributed to upper mantle convection driven by the subduction of the Pacific plate during the early Tertiary. Conversely, the eastern region of the basin demonstrates weak to negative radial anisotropies, indicating a compression shear rupture system influenced by the far-field India-Eurasian collision during the Neogene-Quaternary. These differences suggest that the formation of the BBB is associated with the dynamic transition from Pacific subduction to India-Eurasian collision during the Cenozoic. Moreover, the Luxi uplift, with its stable upper-middle crustal structures, acts as a barrier hindering the eastward extension of the BBB.

Antarctic cold spells shatter records amid global heat waves in late winter 2023

Phys.org: Earth science - Fri, 06/14/2024 - 18:10
While 2023 is noted for breaking global temperature records (State of the Global Climate 2023), the year also brought an unexpected twist with extreme cold events in Antarctica. A new study published in Advances in Atmospheric Sciences reveals the surprising and severe cold spells that struck the continent in late winter (July and August).

Earth from space: The heel of Italy

Phys.org: Earth science - Fri, 06/14/2024 - 17:49
The Copernicus Sentinel-2 mission takes us over a section of Italy's heel in the southern part of the boot-shaped peninsula.

Quantitative study of storm surge risk assessment in an undeveloped coastal area of China based on deep learning and geographic information system techniques: a case study of Double Moon Bay

Natural Hazards and Earth System Sciences - Fri, 06/14/2024 - 17:44
Quantitative study of storm surge risk assessment in an undeveloped coastal area of China based on deep learning and geographic information system techniques: a case study of Double Moon Bay
Lichen Yu, Hao Qin, Shining Huang, Wei Wei, Haoyu Jiang, and Lin Mu
Nat. Hazards Earth Syst. Sci., 24, 2003–2024, https://doi.org/10.5194/nhess-24-2003-2024, 2024
This paper proposes a quantitative storm surge risk assessment method for data-deficient regions. A coupled model is used to simulate five storm surge scenarios. Deep learning is used to extract building footprints. Economic losses are calculated by combining adjusted depth–damage functions with inundation simulation results. Zoning maps illustrate risk levels based on economic losses, aiding in disaster prevention measures to reduce losses in coastal areas.

Simulation of a lithosphere-atmosphere-ionosphere electromagnetic coupling prior to the Wenchuan MS8.0 earthquake

Natural Hazards and Earth System Sciences - Fri, 06/14/2024 - 17:44
Simulation of a lithosphere-atmosphere-ionosphere electromagnetic coupling prior to the Wenchuan MS8.0 earthquake
Mei Li, Zhuangkai Wang, Chen Zhou, Handong Tan, and Meng Cao
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-94,2024
Preprint under review for NHESS (discussion: open, 0 comments)
In order to check the relationship between ground-based electromagnetic anomaly and ionospheric effect before the famous Wenchuan MS 8.0 earthquake, three physical models have been established to simulate the communication process of electromagnetic energy from the Wenchuan hypocenter to the Earth’s surface, via the atmosphere to the ionosphere to cause ionospheric variations.

Internal Tide Surface Signature and Incoherence in the North Atlantic

GRL - Fri, 06/14/2024 - 17:30
Abstract

Despite intensified efforts to better quantify Internal Tide dynamics over past decades, large uncertainties remain regarding their distribution and lifecycle in the ocean. In particular, internal tide incoherence (loss of time-regularity) has limited our ability to characterize, understand, and predict internal tides, challenging the exploitation of new-generation wide-swath satellite altimeters. Based on a realistic high-resolution numerical simulation, we quantify the internal tide distribution and incoherence properties in the North Atlantic. We quantify IT incoherence for sea level and surface currents, and for different vertical modes independently. Our results show that typical decorrelation timescale induced by the mesoscale turbulence are rather short—below 25 days for the first vertical mode. It further exhibits a strong dependence of the internal tide incoherence with location, reflecting regions of enhanced eddy activity, and with vertical mode number—higher baroclinic modes being much more incoherent with shorter decorrelation timescale.

Q&A: Barrier islands and dunes protect coastlines, but how are environmental changes affecting them and adjacent land?

Phys.org: Earth science - Fri, 06/14/2024 - 17:01
Barrier islands dot the landscape along Virginia's Eastern Shore, protecting the coastline from direct impacts of storms and sea-level rise. Made of sand, they are created and changed by environmental factors. But with climate change and human development, these natural processes can be disrupted.

More Frequent Spaceborne Sampling of XCO2 Improves Detectability of Carbon Cycle Seasonal Transitions in Arctic‐Boreal Ecosystems

GRL - Fri, 06/14/2024 - 16:43
Abstract

Surface, aircraft, and satellite measurements indicate pervasive early cold season (Augut–September) CO2 emissions across Arctic regions, consistent with increased ecosystem metabolism in plants and soils. A key remaining question is whether cold season sources will become large enough to permanently shift the Arctic into a net carbon source. Polar orbiting GHG satellites provide robust estimation of regional carbon budgets but lack sufficient spatial coverage and repeat frequency to track sink-to-source transitions in the early cold season. Mission concepts such as the Arctic Observing Mission (AOM) advocate for flying imaging spectrometers in highly elliptical orbits (HEO) over the Arctic to address sampling limitations. We perform retrieval and flux inversion simulation experiments using the AURORA mission concept, leveraging a Panchromatic imaging Fourier Transform Spectrometer (PanFTS) in HEO. Our simulations demonstrate the potential benefits of increased CO2 sampling for detecting emissions during the early cold season.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer