Feed aggregator

An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors

Geoscientific Model Development - Fri, 08/09/2024 - 18:28
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024, 2024
With ERA5 hourly data, we show spatiotemporal characteristics of pressure and zenith wet delay (ZWD) and propose an empirical global pressure and ZWD grid model with a broader operating space which can provide accurate pressure, ZWD, zenith hydrostatic delay, and zenith tropospheric delay estimates for any selected time and location over globe. IGPZWD will be of great significance for the tropospheric augmentation in real-time GNSS positioning and atmospheric water vapor remote sensing.

Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models

Geoscientific Model Development - Fri, 08/09/2024 - 18:28
Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models
Alexander S. Brunmayr, Frank Hagedorn, Margaux Moreno Duborgel, Luisa I. Minich, and Heather D. Graven
Geosci. Model Dev., 17, 5961–5985, https://doi.org/10.5194/gmd-17-5961-2024, 2024
A new generation of soil models promises to more accurately predict the carbon cycle in soils under climate change. However, measurements of 14C (the radioactive carbon isotope) in soils reveal that the new soil models face similar problems to the traditional models: they underestimate the residence time of carbon in soils and may therefore overestimate the net uptake of CO2 by the land ecosystem. Proposed solutions include restructuring the models and calibrating model parameters with 14C data.

Virtual joint field campaign: a framework of synthetic landscapes to assess multiscale measurement methods of water storage

Geoscientific Model Development - Fri, 08/09/2024 - 18:28
Virtual joint field campaign: a framework of synthetic landscapes to assess multiscale measurement methods of water storage
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev. Discuss., https//doi.org/10.5194/gmd-2024-106,2024
Preprint under review for GMD (discussion: open, 0 comments)
Multiple methods for measuring soil moisture beyond the point scale exist. Their validation generally hindered by lack of knowing the truth. We propose a virtual framework, in which this truth is fully known and the sensor observations for Cosmic Ray Neutron Sensing, Remote Sensing, and Hydrogravimetry are simulated. This allows the rigourous testing of these virtual sensors to understand their effectiveness and limitations.

Temporal clustering of precipitation for detection of potential landslides

Natural Hazards and Earth System Sciences - Fri, 08/09/2024 - 17:01
Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024, 2024
Landslides are complex phenomena causing important impacts in vulnerable areas, and they are often triggered by rainfall. Here, we develop a new approach that uses information on the temporal clustering of rainfall, i.e. multiple events close in time, to detect landslide events and compare it with the use of classical empirical rainfall thresholds, considering as a case study the region of Lisbon, Portugal. The results could help to improve the prediction of rainfall-triggered landslides.

A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments

Atmos. Meas. techniques - Fri, 08/09/2024 - 16:19
A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments
Qiang Guo, Yuning Liu, Xin Wang, and Wen Hui
Atmos. Meas. Tech., 17, 4613–4627, https://doi.org/10.5194/amt-17-4613-2024, 2024
Non-linearity (NL) correction is a critical procedure to guarantee that the calibration accuracy of a spaceborne sensor approaches a reasonable level. Different from the classical method, a new NL correction method for a spaceborne Fourier transform spectrometer is proposed. To overcome the inaccurate linear coefficient from two-point calibration influencing NL correction, an iteration algorithm is established that is suitable for NL correction of both infrared and microwave sensors.

Grounding Zones: The “Inland” Dynamic Interface Between Seawater, Outlet Glaciers, Subglacial Meltwater Routing, and Ice‐Shelf Processes

GRL - Fri, 08/09/2024 - 15:48
Abstract

Projections of sea-level rise from ice-sheet shrinkage in a warming world have large uncertainties, linked to limited knowledge of changes at the ocean-ice sheet interface. This interface most typically is modeled as a grounding line, across which still-connected ice flows into the ocean to float as an ice shelf, or where icebergs calve from a cliff before the ice begins to float. But, extensive and rapidly increasing evidence shows that this is really a grounding zone, and that processes in this grounding zone omitted from many models could exert major controls on sea-level rise.

Anatomy of the 2022 Scorching Summer in the Yangtze River Basin Using the SINTEX‐F2 Seasonal Prediction System

GRL - Fri, 08/09/2024 - 14:56
Abstract

In July and August 2022, the Yangtze River basin (YRB) experienced its hottest summer since 1961. The SINTEX-F2 seasonal prediction system initialized in early May predicted the hotter-than-normal summer due to its successful prediction of central Pacific La Niña, negative Indian Ocean Dipole and the resultant warming in the tropical West Pacific-East Indian Ocean (TWP_EIO). The common SST forcing explains only about 26% to the heatwave strength, while the internal variations in the anomalous warming in the TWP_EIO and Europe, surplus precipitation in Pakistan, and local land-air interaction account for approximately 65%, based on the analysis of 108 ensemble members. These factors have collectively increased the maximum temperature over the YRB through the enhancement and westward expansion of western North Pacific subtropical high. Our findings quantify the relative contributions of external forcing and internal variations to the unprecedented hot event, offering insights into its forming mechanism and potential predictability.

Causal Inference in the Outer Radiation Belt: Evidence for Local Acceleration

GRL - Fri, 08/09/2024 - 14:44
Abstract

Currently, there is no clear understanding of the comprehensive set of variables that controls fluxes of relativistic electrons within the outer radiation belt. Herein, the methodology based on causal inference is applied for identification of factors that control fluxes of relativistic electrons in the outer belt. The patterns of interactions between the solar wind, geomagnetic activity and belt electrons have been investigated. We found a significant information transfer from solar wind, geomagnetic activity and fluxes of very low energy electrons (54 keV), into fluxes of relativistic (470 keV) and ultra-relativistic (2.23 MeV) electrons. We present evidence of a direct causal relationship from relativistic into ultra-relativistic electrons, which points to a local acceleration mechanism for electrons energization. It is demonstrated that the observed information transfer from low energy electrons at 54 keV into energetic electrons at 470 keV is due to the presence of common external drivers such as substorm activity.

GOLD Observations of the Merging of the Southern Crest of the Equatorial Ionization Anomaly and Aurora During the 10 and 11 May 2024 Mother's Day Super Geomagnetic Storm

GRL - Fri, 08/09/2024 - 13:00
Abstract

Using NASA's Global-scale Observations of the Limb and Disk (GOLD) imager, we report nightside ionospheric changes during the G5 super geomagnetic storm of 10 and 11 May 2024. Specifically, the nightside southern crest of the Equatorial Ionization Anomaly (EIA) was observed to merge with the aurora near the southern tip of South America. During the storm, the EIA southern crest was seen moving poleward as fast as 450 m/s. Furthermore, the aurora extended to mid-latitudes reaching the southern tips of Africa and South America. The poleward shift of the equatorial ionospheric structure and equatorward motion of the aurora means there was no mid-latitude ionosphere in this region. These observations offer unique insights into the ionospheric response to extreme geomagnetic disturbances, highlighting the complex interplay between solar activity and Earth's upper atmosphere.

Multi-decadal atmospheric carbon dioxide measurements in Hungary, central Europe

Atmos. Meas. techniques - Fri, 08/09/2024 - 11:25
Multi-decadal atmospheric carbon dioxide measurements in Hungary, central Europe
László Haszpra
Atmos. Meas. Tech., 17, 4629–4647, https://doi.org/10.5194/amt-17-4629-2024, 2024
The paper evaluates a 30-year-long atmospheric CO2 data series from a mid-continental central European site, Hegyhátsál (HUN). It presents the site-specific features observed in the long-term evolution of the atmospheric CO2 concentration. Since the measurement data are widely used in atmospheric inverse models and budget calculations all around the world, the paper provides potentially valuable information for model tuning and interpretation of the model results.

Negative Differential Resistance, Instability, and Critical Transition in Lightning Leader

Nonlinear Processes in Geophysics - Fri, 08/09/2024 - 10:42
Negative Differential Resistance, Instability, and Critical Transition in Lightning Leader
Xueqiang Gou, Chao Xin, Liwen Xu, Ping Yuan, Yijun Zhang, and Mingli Cheng
Nonlin. Processes Geophys. Discuss., https//doi.org/10.5194/npg-2024-15,2024
Preprint under review for NPG (discussion: open, 0 comments)
Our research examines lightning's complex behavior by studying changes in its electrical pathways under different conditions. We found that lightning channels switch between stable and unstable states based on their length and surrounding electric fields. This helps explain why lightning often reactivates after a brief pause and offers new insights into these processes. Our findings could improve lightning prediction and protection, benefiting scientific understanding and public safety.

Performance evaluation of an online monitor based on X-ray fluorescence for detecting elemental concentrations in ambient particulate matter

Atmos. Meas. techniques - Thu, 08/08/2024 - 18:56
Performance evaluation of an online monitor based on X-ray fluorescence for detecting elemental concentrations in ambient particulate matter
Ivonne Trebs, Céline Lett, Andreas Krein, Erika Matsumoto Kawaguchi, and Jürgen Junk
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-134,2024
Preprint under review for AMT (discussion: open, 0 comments)
This study explores the effectiveness of the Horiba PX-375 monitor for analyzing the elemental composition of airborne particulate matter (PM). Understanding this composition of PM is important for identifying its sources, assessing potential health risks, and developing strategies to reduce air pollution. The PX-375 monitor proved to be a valuable tool for ongoing air quality monitoring studies and could be particularly useful as pollution levels and sources change in the future.

HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model

Geoscientific Model Development - Thu, 08/08/2024 - 18:28
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024, 2024
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.

Risk-informed representative earthquake scenarios for Valparaíso and Viña del Mar, Chile

Natural Hazards and Earth System Sciences - Thu, 08/08/2024 - 17:01
Risk-informed representative earthquake scenarios for Valparaíso and Viña del Mar, Chile
Hugo Rosero-Velásquez, Mauricio Monsalve, Juan Camilo Gómez Zapata, Elisa Ferrario, Alan Poulos, Juan Carlos de la Llera, and Daniel Straub
Nat. Hazards Earth Syst. Sci., 24, 2667–2687, https://doi.org/10.5194/nhess-24-2667-2024, 2024
Seismic risk management uses reference earthquake scenarios, but the criteria for selecting them do not always consider consequences for exposed assets. Hence, we adopt a definition of representative scenarios associated with a return period and loss level to select such scenarios among a large set of possible earthquakes. We identify the scenarios for the residential-building stock and power supply in Valparaíso and Viña del Mar, Chile. The selected scenarios depend on the exposed assets.

The effect of slab touchdown on anticrack arrest in propagation saw tests

Natural Hazards and Earth System Sciences - Thu, 08/08/2024 - 14:58
The effect of slab touchdown on anticrack arrest in propagation saw tests
Philipp L. Rosendahl, Johannes Schneider, Grégoire Bobillier, Florian Rheinschmidt, Bastian Bergfeld, Alec van Herwijnen, and Philipp Weißgraeber
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-122,2024
Preprint under review for NHESS (discussion: open, 0 comments)
Our research investigates the role of anticracks in snowpacks and their impact on avalanche formation, focusing on anticracks due to weak layer collapse. We discovered that slab touchdown on the snow below the weak layer decreases the energy available for crack propagation, potentially leading to a stop of crack propagation. This underscores the importance of mechanical interactions in snowpack stability. Our work offers new insights for enhancing avalanche prediction and mitigation strategies.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer