Feed aggregator

Investigation of the Contribution of Five Broadcast Ionospheric Models (GPSK, NTCMG, NEQG, BDGIM, and BDSK) and IRTG to GNSS Positioning During Different Solar Activities in Solar Cycle 25

Space Weather - Sun, 07/14/2024 - 07:00
Abstract

Additional ionospheric information is essential for mitigating errors in single-frequency (SF) Global Navigation Satellite Systems (GNSS) positioning. The increasing number of low-cost dual-frequency (DF) receiver users faces limitations in tracking DF observables compared to traditional geodetic receivers. Consequently, ionospheric correction algorithms (ICAs) are also essential for low-cost DF devices in hybrid-frequency positioning. To evaluate the performance of commonly used ICAs during solar cycle 25, our study presents a global statistical investigation of the contribution of five broadcast ionospheric models (BIMs) and the International GNSS Service (IGS) combined real-time global ionospheric maps (IRTG) to the positioning domain, covering both quiet and perturbed ionospheric conditions. The BIMs investigated include the GPS Klobuchar (GPSK), Galileo NequickG (NEQG), NTCM-GlAzpar (NTCMG), BDS-2 Klobuchar (BDSK), and BeiDou Global Ionospheric delay correction Model (BDGIM). Experimental results from standard point positioning indicate that IRTG demonstrates superior overall accuracy compared to all BIMs, with a mean 3D root mean squared (RMS) of 2.76 m during perturbed period. Specifically, GPSK, NTCMG, NEQG, BDGIM, and BDSK exhibit RMS values of 2.03, 1.67, 1.72, 1.62, and 2.36 m during quiet conditions, and 4.02, 3.17, 2.86, 3.14, and 4.44 m during perturbed conditions, respectively. Among the BIMs, NEQG demonstrates superior performance at middle and high latitudes but exhibits lower accuracy than NTCMG and BDGIM at low latitudes during daytime under quiet conditions. BDGIM performs slightly better than NTCMG at low latitudes but slightly worse at high latitudes. BDSK shows notable improvement for high- and mid-latitude regions since 3 June 2020.

Widening Multi‐Beam Scan Angle of Conventional Waveguide Lens Antennas by Increasing Focal Points for Multi‐Feed Excitations

Radio Science - Sun, 07/14/2024 - 07:00
Abstract

This paper presents an alternative approach to improve the achievable beam scan angle of a traditional multi-beam waveguide lens antenna. Due to the focusing mechanism by manipulating the geometrical curvatures of the waveguide lens, the angular scan range is limited in the conventional waveguide lens design using dual-focal points of excitations because the geometrical curvatures of the waveguide lens only provide two design freedoms. To overcome this limitation, a solution of treating the waveguide lens as a transmit array consisting of non-identical elements is proposed so that each element of the antenna array can be well calibrated to improve the maximum scan angular range, where a third focus point of excitation can be created by adding another design freedom from the differentiation between non-identical elements. Each element of this new transmitting array can be well calibrated with the help of a mathematical expression to improve the maximum angular scan range. Numerical simulations show that the proposed antenna architecture exhibits better radiation characteristics than the traditional waveguide lens antenna. Radiation characteristics are studied and compared for both types of lens antennas to validate the design concept. The proposed triple-focal point provides a higher gain than the traditional lens antenna with fewer antenna elements. The gains of the beams at ±10°, ±20°, ±30°, and ±40° are found to be 27.78, 26.94, 26.19, and 24.04 dBi, respectively. From the comparison, it is seen that the variation in gain by the proposed triple-focal array design is more stable than the conventional dual-focal point design.

Time Sequence of Magnetospheric Responses to a Southward IMF Turning

JGR:Space physics - Sun, 07/14/2024 - 07:00
Abstract

We use MHD simulations to study the time sequence of magnetospheric responses to a synthetic event with a southward interplanetary magnetic field (IMF) turning. The onset of dayside magnetopause reconnection launches a weak rarefaction wave and sunward flow in the equatorial magnetosphere simultaneously with a tailward flow through the polar cap. This convection results in the accumulation of magnetic flux in the tail lobes and thinning of the tail current layer which provides favorable conditions for the onset of nightside reconnection. The onset of nightside reconnection about 40 min later closes the Dungey convection cycle, resulting in a second increase in the sunward flow in the equatorial plane. Variations of the magnetopause standoff distance as well as the size of the polar cap (PC) may indicate the onsets of the dayside and nightside reconnections. We compare the results of two MHD models and discuss their differences.

The Ionospheric Leg of the Substorm Current Wedge: Combining Iridium and Ground Magnetometers

JGR:Space physics - Sun, 07/14/2024 - 07:00
Abstract

Utilizing magnetic field measurements made by the Iridium satellites and by ground magnetometers in North America we calculate the full ionospheric current system and investigate the substorm current wedge. The current estimates are independent of ionospheric conductance, and are based on estimates of the divergence-free (DF) ionospheric current from ground magnetometers and curl-free (CF) ionospheric currents from Iridium. The DF and CF currents are represented using spherical elementary current systems (SECS), derived using a new inversion scheme that ensures the current systems' spatial scales are consistent. We present 18 substorm events and find a typical substorm current wedge (SCW) in 12 events. Our investigation of these substorms shows that during substorm expansion, equivalent field-aligned currents (EFACs) derived with ground magnetometers are a poor proxy of the actual FAC. We also find that the intensification of the westward electrojet can occur without an intensification of the FACs. We present theoretical investigations that show that the observed deviation between FACs estimated with satellite measurements and ground-based EFACs are consistent with the presence of a strong local enhancement of the ionospheric conductance, similar to the substorm bulge. Such enhancements of the auroral conductance can also change the ionospheric closure of pre-existing FACs such that the ground magnetic field, and in particular the westward electrojet, changes significantly. These results demonstrate that attributing intensification of the westward electrojet to SCW current closure can yield false understanding of the ionospheric and magnetospheric state.

Improving CMIP6 Atmospheric River Precipitation Estimation by Cycle‐Consistent Generative Adversarial Networks

JGR–Atmospheres - Sat, 07/13/2024 - 06:59
Abstract

Given the important role of Atmospheric River precipitation (ARP) in the global hydrological cycle, accurate representation of ARP is significant. However, general circulation models (GCMs) demonstrate bias in simulating ARP. The target of this study is to quantify the performance of ARP intensity/frequency for CMIP6 simulations, and further to improve ARP estimation of CMIP6 using Cycle-Consistent Generative Adversarial Networks (CycleGAN) with highlighting the more accurate ARP features under the global warming background. The findings of this study are as follows: (a) although ARP intensity/frequency in reserved-optimal CMIP6 overall reproduces the observation, it is still underestimated at the stronger Atmospheric river (AR) scales, particularly for the AR highly active mid-latitude regions. (b) The CycleGAN-based bias correction approach markedly diminishes the bias of the CMIP6 simulations within most of the AR scales among both global and the four AR highly active regions. Moreover, the performance of the ARP in AR highly active regions is significant improvement, which is mainly due to the reduction of the bias at the strongest scale. (c) Relative to reference period (1986–2005), ARP intensity/frequency at the strongest scale increase notably under 3°C warming level, with an average value of 373.3% in intensity and 415.9% in frequency for global and the four key regions before correction, and the value is 451.9% and 492.5% after bias correction. The results illustrate that CycleGAN can effectively improve the ARP simulations of GCMs, and an early warning implies that future strong extreme ARP should potentially surpass the current expected.

Resolving the Turkana Jet—Impact of Model Resolution in Simulating Channel Flow and Inversions

JGR–Atmospheres - Sat, 07/13/2024 - 06:35
Abstract

The Turkana Jet plays a pivotal role in the meteorology of East Africa across timescales, and owes its existence to both large-scale dynamics and the representation of intricate local-scale processes. However, much of our understanding of the jet relies on reanalysis, and these along with climate models that produce important projections do not represent these local-scale processes. We systematically investigate the impact of changing model horizontal and vertical resolution in simulating the Turkana Jet, and associated local and large-scale processes. We perform simulations to coincide with the Radiosonde Investigation For the Turkana Jet (RIFTJet) campaign, enabling direct model-sonde comparisons in unprecedented detail. We find that increasing horizontal model resolution significantly increases the strength of the jet throughout the channel by up to 30%, while vertical resolution changes have little impact. Horizontal resolutions finer than 2.2 km produce a nocturnal jet ∼2 m/s stronger than observed but perform better during the day. The elevated inversion, which is strongly tied to the strength of the jet, is much better represented in resolutions as high as 1.1 km, whereas the global model at resolution O(∼10 km) is unable to produce any nocturnal elevated inversion. Predictions of jet strength are improved at higher resolution, indicating an important role of local process given that models inherit the same large-scale state. Despite further improvements at resolutions finer than 4.4 km, we recommend that 4.4 km is the minimum horizontal resolution required to capture realistic interactions between these processes. Underestimation of the Turkana Jet could cause considerable errors in moisture advection into Africa.

The Key Role of Magnetic Curvature Scattering in Energetic Electron Precipitation During Substorms

GRL - Sat, 07/13/2024 - 03:36
Abstract

Energetic electron precipitation (EEP) during substorms significantly affects ionospheric chemistry and lower-ionosphere (<100 km) conductance. Two mechanisms have been proposed to explain what causes EEP: whistler-mode wave scattering, which dominates at low latitudes (mapping to the inner magnetosphere), and magnetic field-line curvature scattering, which dominates poleward. In this case study, we analyzed a substorm event demonstrating the dominance of curvature scattering. Using ELFIN, POES, and THEMIS observations, we show that 50–1,000 keV EEP was driven by curvature scattering, initiated by an intensification and subsequent earthward motion of the magnetotail current sheet. Using a combination of Swarm, total electron content, and ELFIN measurements, we directly show the location of EEP with energies up to ∼1 MeV, which extended from the plasmapause to the near-Earth plasma sheet (PS). The impact of this strong substorm EEP on ionospheric ionization is also estimated and compared with precipitation of PS (<30 keV) electrons.

Heatwave Location Changes in Relation to Rossby Wave Phase Speed

GRL - Sat, 07/13/2024 - 02:23
Abstract

Surface anticyclones connected to the ridge of an upper-tropospheric Rossby wave are the main dynamical drivers of mid-latitude summer heatwaves. It is, however, unclear to what extent an anomalously low zonal phase speed of the wave in the upper troposphere is necessary for persistent temperature extremes at the surface. Here, we use spectral decomposition to separate fast and slow synoptic-scale waves. A composite analysis of ERA5 reanalysis data reveals that, while in some regions heatwaves become more frequent during episodes of weak or no phase propagation, temperature extremes in other regions are commonly associated with more rapidly eastward propagating Rossby waves. Reflected in the mean heatwave duration as well, this relationship is possibly linked to a longitudinal phase preference of slow and fast waves or a meridional storm track shift. These findings open up new questions about the influence of mid-latitude dynamics on temperature extremes.

A clustering-based method for identifying and tracking squall lines

Atmos. Meas. techniques - Fri, 07/12/2024 - 18:16
A clustering-based method for identifying and tracking squall lines
Zhao Shi, Yuxiang Wen, and Jianxin He
Atmos. Meas. Tech., 17, 4121–4135, https://doi.org/10.5194/amt-17-4121-2024, 2024
The squall line is a type of convective system. Squall lines are often associated with damaging weather, so identifying and tracking squall lines plays an important role in early meteorological disaster warnings. A clustering-based method is proposed in this article. It can identify the squall lines within the radar scanning range with an accuracy rate of 95.93 %. It can also provide the three-dimensional structure and movement tracking results for each squall line.

Uncertainties in temperature statistics and fluxes determined by sonic anemometers due to wind-induced vibrations of mounting arms

Atmos. Meas. techniques - Fri, 07/12/2024 - 18:16
Uncertainties in temperature statistics and fluxes determined by sonic anemometers due to wind-induced vibrations of mounting arms
Zhongming Gao, Heping Liu, Dan Li, Bai Yang, Von Walden, Lei Li, and Ivan Bogoev
Atmos. Meas. Tech., 17, 4109–4120, https://doi.org/10.5194/amt-17-4109-2024, 2024
Using data collected from three levels of a 62 m tower, we found that both the temperature variances and sensible heat flux obtained from sonic anemometers are consistently lower, by a few percent, compared to those from fine-wire thermocouples.

An introduction of Three-Dimensional Precipitation Particles Imager (3D-PPI)

Atmos. Meas. techniques - Fri, 07/12/2024 - 18:16
An introduction of Three-Dimensional Precipitation Particles Imager (3D-PPI)
Jiayi Shi, Xichuan Liu, Lei Liu, Liying Liu, and Peng Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-106,2024
Preprint under review for AMT (discussion: open, 0 comments)
A Three-Dimensional Precipitation Particles Imager (3D-PPI) is introduced as a novel instrument for measuring the three-dimensional shape, size, and fall velocity of the precipitation particles. The field experiment of the 3D-PPI was conducted at Tulihe, China, more than 880,000 snowflakes were recorded during a typical snowfall case lasting for 13 hours. It shows a potential application in atmospheric science, polar research, and other fields.

Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe

Natural Hazards and Earth System Sciences - Fri, 07/12/2024 - 17:29
Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, 2024
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.

Consistent point data assimilation in Firedrake and Icepack

Geoscientific Model Development - Fri, 07/12/2024 - 16:21
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024, 2024
Scientists often use models to study complex processes, like the movement of ice sheets, and compare them to measurements for estimating quantities that are hard to measure. We highlight an approach that ensures accurate results from point data sources (e.g. height measurements) by evaluating the numerical solution at true point locations. This method improves accuracy, aids communication between scientists, and is well-suited for integration with specialised software that automates processes.

STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds

Geoscientific Model Development - Fri, 07/12/2024 - 16:21
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024, 2024
STORM v.2 (short for STOchastic Rainfall Model version 2.0) is an open-source and user-friendly modelling framework for simulating rainfall fields over a basin. It also allows simulating the impact of plausible climate change either on the total seasonal rainfall or the storm’s maximum intensity.

The Ensemble Consistency Test: From CESM to MPAS and Beyond

Geoscientific Model Development - Fri, 07/12/2024 - 16:21
The Ensemble Consistency Test: From CESM to MPAS and Beyond
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev. Discuss., https//doi.org/10.5194/gmd-2024-115,2024
Preprint under review for GMD (discussion: open, 0 comments)
The Ensemble Consistency Test (ECT) and its Ultra-Fast variant (UF-ECT) have become powerful tools in the development community for the identification of unwanted changes in the Community Earth System Model (CESM). We develop a generalized setup framework to enable easy adoption of the ECT approach for other model developers and communities. This framework specifies test parameters to accurately characterize model variability and balance test sensitivity and computational cost.

Crustal Electrical Anisotropic Structure of the Altyn Tagh Fault in the Subei Area, NW China: Implications for Fault Zone Architecture

JGR–Solid Earth - Fri, 07/12/2024 - 14:24
Abstract

The fault zone architecture may provide reliable information about the deformations in both on-fault and off-fault media. The outer damage zones of faults may extend for kilometers and exhibit structural anisotropy, which potentially causes electrical anisotropy in rocks. Thus, electrically anisotropic structures may indicate the dimensions and extent of fault damage zones. We investigated the electrical anisotropic structure of the sinistral Altyn Tagh fault (ATF), NW China, using magnetotelluric data collected in and around the Subei Basin. Our three-dimensional resistivity model reveals widespread anisotropic anomalies at depths <∼5 km. The directions of the minimum horizontal resistivity values of the anomalies inside the Qilian Shan southeast of the ATF are dominantly subparallel to the fault traces at the surface. At deeper levels (∼15–19 km and ∼33–43 km), the anisotropic anomalies are mainly concentrated near the northern strand of the ATF (NATF) and the North Yemahe fault (NYMF) in the northeastern Subei area. The mid-lower crust (∼33–43 km) inside the Qilian Shan is characterized by isotropy or weak anisotropy with low resistivities (∼10 Ωm), which deviate significantly from the values along the NATF. Our results indicate the presence of a ∼30 km wide off-fault damage zone along the NATF and NYMF in the shallow crust that thins downward to the lower crust. We propose that the distribution of anisotropic anomalies is influenced primarily by neighboring faults. An independent deformation model could be appropriate for evaluating the relationships between the ATF and thrust faults within the Qilian Shan.

Why Do DJF 2023/24 Upper‐Level 200‐hPa Geopotential Height Forecasts Look Different From the Expected El Niño Response?

GRL - Fri, 07/12/2024 - 13:43
Abstract

We investigate why the North American Multi-Model Ensemble (NMME) upper-level height forecast for December–February (DJF) 2023/24 differs from the expected El Niño response. These atypical height anomalies emerged despite the fact a strong El Niño was forecast. The analysis focuses on diagnosing the NMME forecasts of DJF 2023/24 for SSTs and 200-hPa heights initialized at the beginning of November 2023 relative to other ensemble mean NMME DJF forecasts dating back to 1982. The results demonstrate that forecasts of the 200-hPa height anomalies had a large contribution from warming trends in global SSTs. It is the combination of trends and the expected El Niño teleconnection that results in the forecast height anomalies. Increasingly, for forecasts of geopotential height anomalies during the recent El Niño winters, the amplitude of trends is nearly equal to the signal from El Niño and has implications for the climatological base period selection for seasonal forecasts.

Mechanically Consistent Model of the 2018 Christmas Volcano‐Tectonic Event at Etna

GRL - Fri, 07/12/2024 - 13:29
Abstract

The interaction between volcanic activity and flank instability during the Christmas Eve eruption at Mount Etna in 2018 is explored, using a mechanically consistent inverse model fitting high spatial resolution SAR data. Inversions search for fractures that may be curved and can accommodate co-eval pressure and shear stress changes. Displacements associated with the eruption result from the interaction between two intrusion sources: a buried dyke and a curved sheared intrusion that fed the eruption. Moreover, we identify that the sheared magmatic intrusion induced the observed eastward slip on the Pernicana fault, while the Fiandaca fault was undergoing stress accumulation, which was suddenly released during a M5.0 seismic event. The Fiandaca fault is determined to be listric, rooting beneath the mobile eastern flank of the volcano. This study highlights the role of curved fractures, acting as sheared intrusions or as faults, in volcanoes exhibiting flank instabilities.

On the Move: 2023 Observations on Real Time Graben Formation, Grindavík, Iceland

GRL - Fri, 07/12/2024 - 12:39
Abstract

Grabens, or valleys formed during extensional tectonic events, are common but rarely observed during formation. In November 2023, inelastic surface deformation formed abruptly along Iceland's plate boundary in Grindavík. We documented graben formation in real-time through satellite mapping (InSAR), seismicity, GNSS data, repeated lidar surveys, and field mapping. Five normal faults and ∼12 fissures ruptured the surface delineating two grabens separated by a horst, a context not present in other contemporary case studies. The graben normal faults slipped rapidly (over hours) and maximum surface motions coincided with the occurrence of turbulent seismic swarms in both space and time. Although 3 eruptions took place ∼15 km northeast of Grindavík from 2021 to 2023, attributed to magma intrusions (i.e., dikes), none of these also formed grabens. Thus, the Grindavík grabens shows evidence for tectonic origins. Real-time monitoring of these phenomena provide insight into graben formation on Earth and potentially on other planets.

Limited Benefits of Increased Spatial Resolution for Sea Ice in HighResMIP Simulations

GRL - Fri, 07/12/2024 - 12:15
Abstract

State-of-the-art coupled climate models struggle to accurately simulate historical variability and trends of Antarctic sea ice, impacting their reliability for future projections. Increasing horizontal resolution is expected to improve the representation of coupled atmosphere-ice-ocean processes at high latitudes. Here, we examine the historical changes in the Antarctic sea ice area and volume in High Resolution Model Intercomparison Project simulations against satellite data sets and ocean reanalyzes to assess the benefits of increased spatial resolution. Our results do not show considerable benefits when horizontal resolutions up to 0.25° in the ocean and 25 km in the atmosphere. Limited improvements are reported in the simulated historical sea ice trends, which are nevertheless model-dependent, and associated with the use of model components with more complex sea-ice parameterizations. Given the high computational cost of climate-scale simulations at high spatial resolution, we advocate prioritizing enhancements in sea-ice physics and the interactions among model components in coupled climate simulations.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer