JGR–Atmospheres

Syndicate content Wiley: Journal of Geophysical Research: Atmospheres: Table of Contents
Table of Contents for Journal of Geophysical Research: Atmospheres. List of articles from both the latest and EarlyView issues.
Updated: 13 weeks 6 days ago

Africa's Climate Response to Marine Cloud Brightening Strategies Is Highly Sensitive to Deployment Region

Fri, 08/30/2024 - 21:04
Abstract

Solar climate intervention refers to a group of methods for reducing climate risks associated with anthropogenic warming by reflecting sunlight. Marine cloud brightening (MCB), one such approach, proposes to inject sea-salt aerosol into one or more regional marine boundary layer to increase marine cloud reflectivity. Here, we assess the potential influence of various MCB experiments on Africa's climate using simulations from the Community Earth System Model (CESM2) with the Community Atmosphere Model (CAM6) as its atmospheric component. We analyzed four idealized MCB experiments under a medium-range background forcing scenario (SSP2-4.5), which brighten clouds over three subtropical ocean regions: (a) Northeast Pacific (MCBNEP); (b) Southeast Pacific (MCBSEP); (c) Southeast Atlantic (MCBSEA); and (d) these three regions simultaneously (MCBALL). Our results suggest that the climate impacts of MCB in Africa are highly sensitive to the deployment region. MCBSEP would produce the strongest global cooling effect and thus could be the most effective in decreasing temperatures, increasing precipitation, and reducing the intensity and frequency of temperature and precipitation extremes across most parts of Africa, especially West Africa, in the future (2035–2054) compared to the historical climate (1995–2014). MCB in other regions produces less cooling and wetting despite similar radiative forcings. While the projected changes under MCBALL are similar to those of MCBSEP, MCBNEP and MCBSEA could see more residual warming and induce a warmer future than under SSP2-4.5 in some regions across Africa. All MCB experiments are more effective in cooling maximum temperature and related extremes than minimum temperature and related extremes.

Preface: Special Issue on Probing the Open Ocean With the Research Sailing Yacht Eugen Seibold for Climate Geochemistry

Thu, 08/29/2024 - 13:09
Abstract

The 72-foot sailing yacht Eugen Seibold is a new research platform for contamination-free sampling of the water column and atmosphere for biological, chemical, and physical properties, and the exchange processes between the two realms. Ultimate goal of the project is a better understanding of the modern and past ocean and climate. Operations started in 2019 in the Northeast Atlantic, and will focus on the Tropical Eastern Pacific from 2023 until 2025. Laboratories for air and seawater analyses are equipped with down-sized and automated state-of-the-art technology for a comprehensive description of the marine carbon system including CO2 concentration in the air and sea surface, pH, macro-, and micro-nutrient concentration (e.g., Fe, Cd), trace metals, and calcareous plankton. Air samples are obtained from ca. 13 m above sea surface and analyzed for particles (incl. black carbon and aerosols) and greenhouse gases. Plankton nets and seawater probes are deployed over the custom-made A-frame at the stern of the boat. Near Real-Time Transfer of underway data via satellite connection allows dynamic expedition planning to maximize gain of information. Data and samples are analyzed in collaboration with the international expert research community. Quality controlled data are published for open access. The entire suite of data facilitates refined proxy calibration of paleoceanographic and paleoclimate archives at high temporal and spatial resolution in relation to seawater and atmospheric parameters.

Assimilating Morning, Evening, and Nighttime Greenhouse Gas Observations in Atmospheric Inversions

Thu, 08/29/2024 - 09:15
Abstract

Improved urban greenhouse gas (GHG) flux estimates are crucial for informing policy and mitigation efforts. Atmospheric inversion modeling (AIM) is a widely used technique combining atmospheric measurements of trace gas, meteorological modeling, and a prior emission map to infer fluxes. Traditionally, AIM relies on mid-afternoon observations due to the well-represented atmospheric boundary layer in meteorological models. However, confining flux assessment to daytime observations is problematic for the urban scale, where air masses typically move over a city in a few hours and AIM therefore cannot provide improved constraints on emissions over the full diurnal cycle. We hypothesized that there are atmospheric conditions beyond the mid-afternoon under which meteorological models also perform well. We tested this hypothesis using tower-based measurements of CO2 and CH4, wind speed observations, weather model outputs from INFLUX (Indianapolis Flux Experiment), and a prior emissions map. By categorizing trace gas vertical gradients according to wind speed classes and identifying when the meteorological model satisfactorily simulates boundary layer depth (BLD), we found that non-afternoon observations can be assimilated when wind speed is >5 m/s. This condition resulted in small modeled BLD biases (<40%) when compared to calmer conditions (>100%). For Indianapolis, 37% of the GHG measurements meet this wind speed criterion, almost tripling the observations retained for AIM. Similar results are expected for windy cities like Auckland, Melbourne, and Boston, potentially allowing AIM to assimilate up to 60% of the total (24-hr) observations. Incorporating these observations in AIMs should yield a more diurnally comprehensive evaluation of urban GHG emissions.

Impact of Heatwaves and Declining NOx on Nocturnal Monoterpene Oxidation in the Urban Southeastern United States

Wed, 08/28/2024 - 20:03
Abstract

Nighttime oxidation of monoterpenes (MT) via the nitrate radical (NO3) and ozone (O3) contributes to the formation of secondary organic aerosol (SOA). This study uses observations in Atlanta, Georgia from 2011 to 2022 to quantify trends in nighttime production of NO3 (PNO3) and O3 concentrations and compare to model outputs from the EPA's Air QUAlity TimE Series Project (EQUATES). We present urban-suburban gradients in nighttime NO3 and O3 concentrations and quantify their fractional importance (F) for MT oxidation. Both observations and EQUATES show a decline in PNO3, with modeled PNO3 declining faster than observations. Despite decreasing PNO3, we find that NO3 continues to dominate nocturnal boundary layer (NBL) MT oxidation (FNO3 = 60%) in 2017, 2021, and 2022, which is consistent with EQUATES (FNO3 = 80%) from 2013 to 2019. This contrasts an anticipated decline in FNO3 based on prior observations in the nighttime residual layer, where O3 is the dominant oxidant. Using two case studies of heatwaves in summer 2022, we show that extreme heat events can increase NO3 concentrations and FNO3, leading to short MT lifetimes (<1 hr) and high gas-phase organic nitrate production. Regardless of the presence of heatwaves, our findings suggest sustained organic nitrate aerosol formation in the urban SE US under declining NOx emissions, and highlight the need for improved representation of extreme heat events in chemistry-transport models and additional observations along urban to rural gradients.

Constraining Present‐Day Anthropogenic Total Iron Emissions Using Model and Observations

Wed, 08/28/2024 - 18:23
Abstract

Iron emissions from human activities, such as oil combustion and smelting, affect the Earth's climate and marine ecosystems. These emissions are difficult to quantify accurately due to a lack of observations, particularly in remote ocean regions. In this study, we used long-term, near-source observations in areas with a dominance of anthropogenic iron emissions in various parts of the world to better estimate the total amount of anthropogenic iron emissions. We also used a statistical source apportionment method to identify the anthropogenic components and their sub-sources from bulk aerosol observations in the United States. We find that the estimates of anthropogenic iron emissions are within a factor of 3 in most regions compared to previous inventory estimates. Under- or overestimation varied by region and depended on the number of sites, interannual variability, and the statistical filter choice. Smelting-related iron emissions are overestimated by a factor of 1.5 in East Asia compared to previous estimates. More long-term iron observations and the consideration of the influence of dust and wildfires could help reduce the uncertainty in anthropogenic iron emissions estimates.

Differences in Thunderstorms' Ice Microphysics Between the Amazon and Central Africa Inferred From Spaceborne Passive Microwave and Radar Observations

Tue, 08/27/2024 - 19:14
Abstract

This study examines the differences related to microphysical properties of ice in thunderstorms over the Amazon and Congo Basin using the Precipitation Feature (PF) data sets derived from passive microwave and radar observations from the Tropical Rainfall Measuring Mission and Global Precipitation Mission Core Satellites. Analysis reveals that Amazon thunderstorms are likely composed of ice crystals smaller but more numerous than those in the Congo Basin, resulting in half as many flashes per PF on average in the Amazon, for similar Ice Water Content (IWC) or Area of 30 dBZ at −10°C (Acharge). The increase of the flash count following an increase of the IWC (Acharge) is only 72% (61%) as effective in the Amazon as it would be in the Congo Basin area. PFs with similar 30 dBZ radar echo top heights exhibit lower Brightness Temperatures (TBs) in the 85/89, 165, and 183 GHz frequencies over the Amazon, indicating more numerous smaller ice particles compared to those over the Congo Basin, which tend to show colder TBs at 37 GHz, possibly due to more numerous large graupel or hail particles. Comparisons of TBs in PFs with similar 30 dBZ echo top temperature between the Amazon and 3 × 3º global grids show that the median TB in Amazon is higher than that in most oceanic areas but is comparable to areas having high oceanic lightning activity (e.g., South Pacific Convergence Zone). It suggests that systems in the Amazon have similarities with maritime precipitation systems, yet with distinct characteristics indicative of land systems.

Ozone‐Depleting Substances Unintendedly Emitted From Iron and Steel Industry: CFCs, HCFCs, Halons and Halogenated Very Short‐Lived Substances

Tue, 08/27/2024 - 17:19
Abstract

Ozone-depleting substances (ODSs) are well known as primary emission from the production and consumption of traditional industrial sectors. Here, we reported the unintentional emission of ODSs from iron and steel plants as a new source, basing on real-world measurements of flue gases emitted from their major processes. The sintering was found to be the major emission process of ODSs, including chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), halons, methyl halide (CH3Cl), methyl chloroform, carbon tetrachloride, methyl bromide and halogenated very short-lived substances. The median emission factors of CFC-113, CFC-115, HCFC-22, and CH3Cl for typical sintering processes are 1.7, 0.7, 44.5 and 237.0 mg/t, respectively. Quantum chemical calculation figures out that the ODS species are mainly formed in the low efficiency combustion process of halogenated materials. Annual amounts of ODS and CFC-11-equivalent emissions were estimated to be 1,785 tons and 78 tons in 2019 over mainland China, respectively. Given these findings, this study provides a new prospective on searching for ODS emission sources, especially unintentional sources such as iron and steel industry and other combustion related activities.

Seasonal Variations and Controls on Triple Oxygen and Hydrogen Isotopes in Precipitation—A Case Study From Monitoring in Southwest China

Mon, 08/26/2024 - 18:24
Abstract

Precipitation δ18O has offered valuable insights into the evolution of the Asian monsoon. Recent researches focusing on precipitation Δ′17O has enhanced our understanding by offering new perspectives beyond those of δ18O, revealing insights into vapor sources and continental recycling. Nevertheless, there remains a lack of interannual triple oxygen isotope data, particularly in the Asian monsoon region. In this study, we analyzed the triple oxygen isotopes and hydrogen isotopes in monthly precipitation samples collected from Chongqing in Southwest China between 2019 and 2022 A.D. Seasonal variations in δD, δ18O, δ17O, and d-excess values were observed, with lower values during the rainy season and higher values during the dry season, highlighting the impact of changes in moisture sources and local meteorological conditions on seasonal shifts in δD, δ18O, and δ17O. While, mean Δ′17O values were higher in rainy season and lower in dry season. Notably, during rainy season, there is a negative correlation between monthly Δ′17O values and the RH of the vapor source area, as well as a positive correlation with d-excess. Recalculated Δ′17O values based on RH of oceanic moisture source, are higher than the measured values for this period, indicating the contribution of terrigenous moisture to precipitation in SW China. Precipitation Δ′17O values provide a more precise reflection of changes in moisture source, continental recycling, and evapotranspiration processes that drive water cycling compared Integrating modeling works in future will facilitate the use of precipitation Δ′17O values to quantify the impact of different moisture source on precipitation.

Issue Information

Mon, 08/26/2024 - 17:04

No abstract is available for this article.

Near‐Surface Wind Convergence Along the Sea Ice Edge in the Greenland Sea: Its Mean State and Shaping Process

Sat, 08/24/2024 - 19:05
Abstract

At mid-latitudes, a narrow band of near-surface wind convergence (NSWC) overlies the western boundary currents in long-term climatology as a response to steep sea surface temperature gradients. The underlying dynamics shaping mean convergence in the mid-latitude region have been investigated in detail. In polar regions, surface temperature gradients are intense along the sea ice edges. However, literature concerning NSWC near sea ice edges is limited. This study investigates time-mean NSWC along sea ice edges and its shaping processes, focusing on the Greenland Sea, based on atmospheric reanalysis. In cold-season climatology, positive NSWC overlies the sea ice edge, resulting in a localized upward motion reaching the free atmosphere. The mean NSWC was insensitive to sea ice thickness and surface roughness in the regional model. This study suggests that, in addition to local atmospheric boundary processes, extreme NSWC events play a vital role in shaping the mean distribution. Although these features are similar to those along the Gulf Stream, atmospheric fronts appear to play a relatively minor role in the Greenland Sea. Instead, the frequent cyclone generation near the sea ice edge and the anticyclonic circulation over Greenland in conjunction with the transient synoptic circulation seem essential. In the warm season, positive NSWC was virtually missing in the Greenland Sea, unlike in the Gulf Stream region, reflecting the shallow virtual temperature response to the surface thermal forcing. This study contributes to understanding the mechanisms by which sea ice variability affects large-scale atmospheric circulation in remote regions.

Forecasting Daily Fire Radiative Energy Using Data Driven Methods and Machine Learning Techniques

Sat, 08/24/2024 - 16:49
Abstract

Increasing impacts of wildfires on Western US air quality highlights the need for forecasts of smoke emissions based on dynamic modeled wildfires. This work utilizes knowledge of weather, fuels, topography, and firefighting, combined with machine learning and other statistical methods, to generate 1- and 2-day forecasts of fire radiative energy (FRE). The models are trained on data covering 2019 and 2021 and evaluated on data for 2020. For the 1-day (2-day) forecasts, the random forest model shows the most skill, explaining 48% (25%) of the variance in observed daily FRE when trained on all available predictors compared to the 2% (<0%) of variance explained by persistence for the extreme fire year of 2020. The random forest model also shows improved skill in forecasting day-to-day increases and decreases in FRE, with 28% (39%) of observed increase (decrease) days predicted, and increase (decrease) days are identified with 62% (60%) accuracy. Error in the random forest increases with FRE, and the random forest tends toward persistence under severe fire weather. Sensitivity analysis shows that near-surface weather and the latest observed FRE contribute the most to the skill of the model. When the random forest model was trained on subsets of the training data produced by agencies (e.g., the Canadian or US Forest Services), comparable if not better performance was achieved (1-day R 2 = 0.39–0.48, 2-day R 2 = 0.13–0.34). FRE is used to compute emissions, so these results demonstrate potential for improved fire emissions forecasts for air quality models.

The North Pacific Meridional Mode and Its Impact on ENSO in the Second Version of the Chinese Academy of Sciences Earth System Model

Fri, 08/23/2024 - 12:09
Abstract

The North Pacific Meridional Mode (PMM) is the strongest interannual air-sea coupled system in the subtropical northeastern Pacific, which can significantly impact the development of El Niño and Southern Oscillation (ENSO). This study examines performance of the second version of the Chinese Academy of Sciences Earth System Model (CAS-ESM2), developed primarily at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS), in simulating the PMM, ENSO, and their relationship. It reveals that CAS-ESM2 can well reproduce the tropical climate mean states, including sea surface temperature (SST), surface winds, and precipitation. Furthermore, the model shows a good ability in reproducing the seasonal evolutions of the PMM and ENSO. Moreover, CAS-ESM2 effectively simulates the influence of the PMM on subsequent ENSO and the underlying physical mechanisms, including the wind-evaporation-SST feedback process, the trade wind charging mechanism and summer deep convection mechanism. However, some improvements are still needed, particularly in representing the periodicity of the PMM, an overestimation of the ENSO intensity and westward extension of ENSO-related SST anomalies in the tropical Pacific. The results obtained from the CAS-ESM2 showcase significant progress in understanding the interaction between air-sea interaction systems over the tropics and subtropics.

The Abundance and Sources of Ice Nucleating Particles Within Alaskan Ice Fog

Fri, 08/23/2024 - 11:55
Abstract

The Alaskan Layered Pollution and Chemical Analysis (ALPACA) field campaign included deployment of a suite of atmospheric measurements in January–February 2022 with the goal of better understanding atmospheric processes and pollution under cold and dark conditions in Fairbanks, Alaska. We report on measurements of particle composition, particle size, ice nucleating particle (INP) composition, and INP size during an ice fog period (29 January–3 February). During this period, coarse particulate matter (PM10) concentrations increased by 150% in association with a decrease in air temperature, a stronger temperature inversion, and relatively stagnant conditions. Results also show a 18%–78% decrease in INPs during the ice fog period, indicating that particles had activated into the ice fog via nucleation. Peroxide and heat treatments performed on INPs indicated that, on average, the largest contributions to the INP population were heat-labile (potentially biological, 63%), organic (31%), then inorganic (likely dust, 6%). Measurements of levoglucosan and bulk and single-particle composition corroborate the presence of dust and aerosols from combustion sources. Heat-labile and organic INPs decreased during the peak period of the ice fog, indicating those were preferentially activated, while inorganic INPs increased, suggesting they remained as interstitial INPs. In general, INP concentrations were unexpectedly high in Fairbanks compared to other locations in the Arctic during winter. The fact that these INPs likely facilitated ice fog formation in Fairbanks has implications for other high latitude locations subject to the hazards associated with ice fog.

Changes in the Asian ITCZ During the Last Interglacial, the Last Glacial Maximum, and the Mid‐Holocene

Fri, 08/23/2024 - 11:29
Abstract

We investigate the position and intensity changes of the Intertropical Convergence Zone (ITCZ) over Asia (50°E−135°E) relative to the preindustrial period annually and seasonally during the Last Interglacial (LIG), Last Glacial Maximum (LGM), and mid-Holocene (MH) using available models from phases 3 and 4 of the Paleoclimate Modeling Intercomparison Project. The multi-model mean shows that the June–July–August ITCZ variations generally dominate the annual changes. The Asian ITCZ shifts northward over western Asia and southward over the eastern side in both the LIG and MH, and the opposite occurs in the LGM. Its intensity varies with longitude similarly for the LIG and MH and generally weakens in the LGM. Precipitation changes associated directly with ITCZ indices are primarily caused by the dynamic term in the LIG and MH, while both dynamic and thermodynamic terms play roles in the LGM, with major contributions from the convergence components.

Influences of Background Rotation on Secondary Eyewall Formation of Tropical Cyclones in Idealized f‐Plane Simulations

Fri, 08/23/2024 - 11:19
Abstract

This study investigates the background rotational influences on the secondary eyewall formation (SEF) in tropical cyclones (TCs) in quiescent f-plane environments. For given initial structures, simulated vortices tend to experience earlier SEF at lower latitudes. Yet the size of the secondary eyewall does not change monotonically with the latitudes. Specifically, ∼20°N provides the optimal amount of background rotation for the largest secondary eyewall size without considering other environmental forcings. Different background rotation rates affect SEF mainly by modulating the outer-core convection as well as the wind structures. Specifically, the lower rotation rate causes more outer-core surface fluxes, thus facilitating the outer rainbands (ORBs) at larger radii. Yet the secondary eyewall does not necessarily form at larger radii at lower latitudes since the transition from the ORBs to secondary eyewall is localized in a region of boundary layer (BL) convergence preceded by accelerated tangential winds. Budget analysis reveals that the differences in the acceleration of outer-core tangential winds among vortices at different latitudes are dominated by the radial flux of absolute vorticity. Due to the non-uniform influences of background rotation on the BL inflow and absolute vorticity, the most efficient spin-up of outer-core tangential winds is achieved at a medium latitude of 20°N, which leads up to SEF at the largest radii. By comparison, for TCs at lower (higher) latitudes, the lower outer-core absolute vorticity (radial inflow) limits the acceleration of outer-core tangential winds, thus placing SEF at smaller radii.

High‐Resolution Ice‐Core Analyses Identify the Eldgjá Eruption and a Cluster of Icelandic and Trans‐Continental Tephras Between 936 and 943 CE

Thu, 08/22/2024 - 07:08
Abstract

The Eldgjá eruption is the largest basalt lava flood of the Common Era. It has been linked to a major ice-core sulfur (S) spike in 939–940 CE and Northern Hemisphere summer cooling in 940 CE. Despite its magnitude and potential climate impacts, uncertainties remain concerning the eruption timeline, atmospheric dispersal of emitted volatiles, and coincident volcanism in Iceland and elsewhere. Here, we present a comprehensive analysis of Greenland ice-cores from 936 to 943 CE, revealing a complex volatile record and cryptotephra with numerous geochemical populations. Transitional alkali basalt tephra matching Eldgjá are found in 939–940 CE, while tholeiitic basalt shards present in 936/937 CE and 940/941 CE are compatible with contemporaneous Icelandic eruptions from Grímsvötn and Bárðarbunga-Veiðivötn systems (including V-Sv tephra). We also find four silicic tephra populations, one of which we link to the Jala Pumice of Ceboruco (Mexico) at 941 ± 1 CE. Triple S isotopes, Δ33S, spanning 936–940 CE are indicative of upper tropospheric/lower stratospheric transport of aerosol sourced from the Icelandic fissure eruptions. However, anomalous Δ33S (down to −0.4‰) in 940–941 CE evidence stratospheric aerosol transport consistent with summer surface cooling revealed by tree-ring reconstructions. Tephra associated with the anomalous Δ33S have a variety of compositions, complicating the attribution of climate cooling to Eldgjá alone. Nevertheless, our study confirms a major S emission from Eldgjá in 939–940 CE and implicates Eldgjá and a cluster of eruptions as triggers of summer cooling, severe winters, and privations in ∼940 CE.

Linking Future Precipitation Changes to Weather Features in CESM2‐LE

Wed, 08/21/2024 - 20:24
Abstract

Weather features, such as extratropical cyclones, atmospheric rivers (ARs), and fronts, contribute to substantial amounts of precipitation globally and are associated with different precipitation characteristics. However, future changes in these characteristics, as well as their representation in climate models, remain uncertain. We attribute 6-hourly accumulated precipitation to cyclones, moisture transport axes (AR-like features), fronts, and cold air outbreaks, and the combinations thereof in 10 ensemble members of the CESM2-LE between 1960 and 2100 under the SSP3-7.0 scenario. We find that, despite some biases in both precipitation and weather features, CESM2-LE adeptly represents the precipitation characteristics associated with the different combinations of weather features. The combinations of weather features that contribute most to precipitation in the present climate also contribute the most to future changes, both due to changes in intensity as well as frequency. While the increase in precipitation intensity dominates the overall response for total precipitation in the storm track regions, the precipitation intensity for the individual weather features does not necessarily change significantly. Instead, approximately half of the increase in precipitation intensity in the storm track regions can be attributed to a higher occurrence of the more intensely precipitating combinations of weather features, such as the co-occurrence of extratropical cyclones, fronts, and moisture transport axes.

Why Is the Dust Activity in the Atacama Desert Low Despite its Aridity?

Wed, 08/21/2024 - 20:18
Abstract

The Atacama Desert is amongst the driest places on Earth yet large dust outbreaks seem rare. We present the first quantitative assessment of dust events in the Atacama for 1950–2021 based on station observations. A total of 1920 dust days were recorded with less than 10% being classified as dust storms. We calculated the wind speeds at 5%, 25% and 50% of the dust-event frequency distribution. The mean wind speed for the threshold of 5% is 10.9 ± 1.6 ms−1 which is twice as large as the values in the Taklamakan, Western Sahel, and Sudan, and consistent with the perceptually infrequent dust activity despite the exceptional aridity. We see no overall long-term trend but increased dust activity for 1970–1978, 1984–1988 and 2013–2017. A combination of changes in the wind speed statistics and soil conditions, possibly including anthropogenic land-use changes have led to the variability in dust activity.

Physicochemical Characterization of Religious Burning Aerosols in Lhasa on the Qinghai‐Tibet Plateau

Wed, 08/21/2024 - 20:08
Abstract

Religious burning (RB) has been identified as a major source of atmospheric aerosols on the Qinghai-Tibet Plateau. However, there is limited understanding of the detailed chemical composition, size distribution, and optical properties of RB aerosols in this region. To characterize these important aerosol properties, ambient PM2.5 and size resolved aerosols from RB emissions in Lhasa were collected during summer 2019. Organic functional group (OFG) and inorganic ion composition was measured using Fourier transform infrared spectroscopy and ion chromatography, respectively. The ambient PM2.5 was dominated by organic components, with the OFG concentrations significantly higher during religious events, reflecting the substantial impact of RB emissions on local air quality. The RB aerosols were characterized by high fractions of alkane (34%), hydroxyl (29%), and carboxylic acid (13%) groups, with peak mass in the accumulation mode (0.56–1.00 μm). The high abundance of hydroxyl group and the size distribution pattern suggested that the RB aerosols were formed from volatilization of fuel materials followed by unaltered condensation, a process that may be unique to the low-temperature, low-oxygen burning in the scattered burners at the temples. The absorption coefficient of RB aerosols showed similar size distribution to the mass size distribution, but the absorption Ångström exponent displayed the lowest value in the 0.56–1.00 μm size mode. This specific size distribution aligned with the mass fraction of carboxylic acids and mirrored the mass proportion of alkanes, suggesting that smaller and larger particles were enriched with substances that have higher light-absorbing capabilities.

Synoptic and Mesoscale Dynamics of Cold Surges Over the South China Sea and Their Control on Extreme Rainfall

Wed, 08/21/2024 - 20:05
Abstract

We investigate the synoptic and mesoscale dynamics of two wet and two dry cold surges in January 2021 using a combination of observations, reanalysis, and convective-scale model forecasts from the Met Office Unified Model (MetUM). We focus on the wet surges, and particularly the wettest days which are locally extreme over Singapore and the surrounding region (i.e., the daily mean and area-averaged rainfall over 20 years exceeds the 99th percentile). On the large scale, the wet surges are characterized by an anomalously strong anticyclone over Siberia prior to their onset. The anticyclone and resultant surge winds are stronger than those of the dry surges. There is also a relatively moist (dry) environment prior to the onset of the wet (dry) surges, with the Madden-Julian Oscillation (MJO) being in Phase 3 (Phase 6). On the mesoscale, the combination of the cold surge and a local tropical low produce strong, moist north-easterly winds and convection over the Singapore region. The equatorward advection of positive anomalies of equivalent potential temperature resembles a weak gravity-current-like structure at its head, although the spatial scale is much too large for a gravity current. There is a moist bias in the model forecasts, although the precipitation is underestimated regionally during the wet surges and particularly on the extreme rainfall days. Overall, the model forecasts perform well synoptically but not in the details of mesoscale convection.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer