Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Giant plumes of Sahara Desert dust that gust across the Atlantic can suppress hurricane formation over the ocean and affect weather in North America. But thick dust plumes can also lead to heavier rainfall—and potentially more destruction—from landfalling storms, according to a study in Science Advances.
New research led by the University of East Anglia (UEA) and Plymouth Marine Laboratory (PML) has found that the Southern Ocean absorbs more carbon dioxide (CO2) than previously thought.
Abstract
Water years (WY) 2017 and 2023 were anomalously wet for California, each alleviating multiyear drought. In both cases, this was unexpected given La Niña conditions, with most seasonal forecasts favoring drier-than-normal winters. We analyze over seven decades of precipitation and snow records along with mid-tropospheric circulation to identify recurring weather patterns driving California precipitation and Sierra Nevada snowpack. Tropical forcing by ENSO causes subtle but important differences in these wet weather patterns, which largely drives the canonical seasonal ENSO-precipitation relationship. However, the seasonal frequency of these weather patterns is not strongly modulated by ENSO and remains a primary source of uncertainty for seasonal forecasting. Seasonal frequency of ENSO-independent weather patterns was a major cause of anomalous precipitation in WY2017, record-setting snow in WY2023, and differences in precipitation outcome during recent El Niño winters 1983, 1998, and 2016. Improved understanding of recurrent atmospheric weather patterns could help to improve seasonal precipitation forecasts.
Abstract
Rock salt is considered a suitable medium for the permanent disposal of heat-generating radioactive waste due to its isolation properties. However, excavation damage and heating induce complex and heterogeneous thermal-hydrological-mechanical (THM) processes across different zones. Quantifying this heterogeneity is crucial for accurate long-term performance assessment models, but traditional methods lack the necessary resolution. This study employs 4D electrical resistivity tomography (ERT) monitoring during controlled heating experiments in a salt formation to unravel the spatiotemporal dynamics of THM processes. Advanced time-lapse inversion and clustering analysis quantify subsurface properties and map the heterogeneity of THM dynamics. The ERT results can estimate subsurface properties and delineate the damaged and intact zones, enabling appropriate parameterization and representation of processes for long-term modeling. This approach may be used in further improving the predictive models and ensuring the safe long-term disposal of radioactive waste in rock salt.
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, 2024
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024, 2024
The Global Change Analysis Model (GCAM) simulates the world’s climate–land–energy–water system interactions , but its reservoir representation is limited. We developed the GLObal Reservoir Yield (GLORY) model to provide GCAM with information on the cost of supplying water based on reservoir construction costs, climate and demand conditions, and reservoir expansion potential. GLORY enhances our understanding of future reservoir capacity needs to meet human demands in a changing climate.
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, 2024
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Abstract
We calculate the climate forcing for the 2 ys after the 15 January 2022, Hunga Tonga-Hunga Ha'apai (Hunga) eruption. We use satellite observations of stratospheric aerosols, trace gases and temperatures to compute the tropopause radiative flux changes relative to climatology. Overall, the net downward radiative flux decreased compared to climatology. The Hunga stratospheric water vapor anomaly initially increases the downward infrared radiative flux, but this forcing diminishes as the anomaly disperses. The Hunga aerosols cause a solar flux reduction that dominates the net flux change over most of the 2 yrs period. Hunga induced temperature changes produce a decrease in downward long-wave flux. Hunga induced ozone reduction increases the short-wave downward flux creating small sub-tropical increase in total flux from mid-2022 to 2023. By the end of 2023, most of the Hunga induced radiative forcing changes have disappeared. There is some disagreement in the satellite measured stratospheric aerosol optical depth (SAOD) observations which we view as a measure of the uncertainty; however, the SAOD uncertainty does not alter our conclusion that, overall, aerosols dominate the radiative flux changes.
Abstract
Previous studies have confirmed the diverse spatiotemporal characteristics of Atlantic Niño events. Our research further reveals the crucial preparatory role of equatorial western Atlantic barrier layers (BL) and the triggering effect of westerly wind bursts (WWB) on different varieties of Atlantic Niño. Strong easterly winds typically facilitate the formation of thick BL by deepening isothermal layer depth in the western Atlantic through horizontal transport. The existence of BL accumulates the necessary heat for the onset of Atlantic Niño. Additionally, the timing of BL occurrences, the presence of easterly wind anomalies preceding WWB, and the duration of westerly wind anomalies jointly contribute to Atlantic Niño diversity. Persistent westerly wind anomalies following strong easterly winds often lead to Atlantic Niño events lasting over 6 months, while short-lived events occur when westerly wind anomalies cease shortly after their onset.
Abstract
The state and fate of snow on sea ice are crucial in the mass and energy balance of sea ice. The function of atmospheric rivers (ARs) on snow depth over sea ice has not been measured thus far, limiting the understanding of the mechanism of snow depth changes. Here, the effect of ARs on snow depth changes was explored. We found that increased AR frequency is responsible for winter-autumn snow accumulation and spring-summer snow melting. The 2 m air temperature (T2m), rainfall, snowfall, mean net longwave radiation (NLR), mean net shortwave radiation (NSR) and cloud radiative effect (CRE) during ARs explain the changes in snow depth triggered by AR occurrence. This work helps us understand how ARs affect snow depth changes through related physical processes, promotes an understanding of climate systems and provides a theoretical basis for snow treatment in sea ice models.
Nitrogen fertilizers and nitrogen oxides from fossil fuels are known for their environmental damage: they pollute the air and drinking water, lead to over-fertilization of water and land ecosystems, reduce biodiversity and damage the ozone layer.
An interlaboratory comparison to quantify oxidative potential measurement in aerosol particles: challenges and recommendations for harmonisation
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian S. Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Aikaterina Seitanidi, Pourya Shahpoury, Eduardo J. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-107,2024
Preprint under review for AMT (discussion: open, 0 comments)
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP DTT assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardization in OP procedures.
A new analysis of rocks thought to be at least 2.5 billion years old by researchers at the Smithsonian's National Museum of Natural History helps clarify the chemical history of Earth's mantle—the geologic layer beneath the planet's crust.
The Southern Ocean plays a central role in the global uptake of heat and carbon, which is widely thought to be due to its unique upwelling and circulation. An international research team, led by the University of Liverpool, explored whether there are differences in how the Southern Ocean contributes to the global uptake of heat and carbon.
A significant portion of recent improvements in air quality in India resulted from favorable meteorological conditions that are unlikely to persist as the climate changes, a new study has found.
Nestled high in the Eastern Lesotho Highlands, scientists have uncovered fascinating evidence of an ancient mountain lake that flourished thousands of years ago. This discovery, made by Professor Jennifer Fitchett from the University of the Witwatersrand and Prof Anson Mackay from University College London, sheds light on a hidden chapter of Lesotho's natural history, revealing how climate and geography have shaped the region over millennia.
Simulation characteristics of seismic translation and rotation under the assumption of nonlinear small deformation
Wei Li, Yun Wang, Chang Chen, and Lixia Sun
Nonlin. Processes Geophys. Discuss., https//doi.org/10.5194/npg-2024-17,2024
Preprint under review for NPG (discussion: open, 2 comments)
In contrast to classical elastodynamics, which assumes linear small deformations, we develop new seismic elastic wave equations using the Green strain tensor and explore nonlinearity as a source of observed disparities. We simulate different seismic sources to analyze translational and rotational components, revealing significant errors in linear approximations. Our results show that nonlinear effects are pronounced in rotational motions during strong earthquakes.
Ionospheric upwelling and the level of associated noise at solar minimum
Timothy Wemimo David, Chizurumoke Michael Michael, Darren Wright, Adetoro Temitope Talabi, and Abayomi Ekundayo Ajetunmobi
Ann. Geophys., 42, 349–354, https://doi.org/10.5194/angeo-42-349-2024, 2024
The Earth’s upper atmospheres are dominated by matter also known as plasma. These plasmas can flow from the lower region, the ionosphere, to the further-up region, the magnetosphere, which is described as upwelling. We analyse data for ionospheric upwelling over the solar minimum period. A main finding is that the noise or rejected data in the dataset were predominant around the local evening and in winter and minimum around local noon and in summer.
Author(s): T. Q. Thelen, D. A. Rehn, C. J. Fontes, and C. E. Starrett
In a dense plasma environment, the energy levels of an ion shift relative to the isolated ion values. This shift is reflected in the optical spectrum of the plasma and can be measured in, for example, emission experiments. In this work we use a recently developed method of modeling electronic states…
[Phys. Rev. E 110, 015207] Published Wed Jul 24, 2024