Feed aggregator

Beam‐Driven Electron Cyclotron Harmonic and Electron Acoustic Waves as Seen in Particle‐In‐Cell Simulations

JGR:Space physics - Fri, 05/31/2024 - 14:51
Abstract

Recent study has demonstrated that electron cyclotron harmonic (ECH) waves can be excited by a low energy electron beam. Such waves propagate at moderately oblique wave normal angles (∼70°). The potential effects of beam-driven ECH waves on electron dynamics in Earth's plasma sheet is not known. Using two-dimensional Darwin particle-in-cell simulations with initial electron distributions that represent typical plasma conditions in the plasma sheet, we explore the excitation and saturation of such beam-driven ECH waves. Both ECH and electron acoustic waves are excited in the simulation and propagate at oblique wave normal angles. Compared with the electron acoustic waves, ECH waves grow much faster and have more intense saturation amplitudes. Cold, stationary electrons are first accelerated by ECH waves through cyclotron resonance and then accelerated in the parallel direction by both the ECH and electron acoustic waves through Landau resonance. Beam electrons, on the other hand, are decelerated in the parallel direction and scattered to larger pitch angles. The relaxation of the electron beam and the continuous heating of the cold electrons contribute to ECH wave saturation and suppress the excitation of electron acoustic waves. When the ratio of plasma to electron cyclotron frequency ω pe /ω ce increases, the ECH wave amplitude increases while the electron acoustic wave amplitude decreases. Our work reveals the importance of ECH and electron acoustic waves in reshaping sub-thermal electron distributions and improves our understanding on the potential effects of wave-particle interactions in trapping ionospheric electron outflows and forming anisotropic (field-aligned) electron distributions in the plasma sheet.

Field‐Aligned Currents Associated With Pulsating Auroral Patches: Observation With Magneto‐Impedance Magnetometer (MIM) Onboard Loss Through Auroral Microburst Pulsations (LAMP) Sounding Rocket

JGR:Space physics - Fri, 05/31/2024 - 14:51
Abstract

We made observations of magnetic field variations in association with pulsating auroras with the magneto-impedance sensor magnetometer (MIM) carried by the Loss through Auroral Microburst Pulsations (LAMP) sounding rocket that was launched at 11:27:30 UT on 5 March 2022 from Poker Flat Research Range, Alaska. At an altitude of 200–250 km, MIM detected clear enhancements of the magnetic field by 15–25 nT in both the northward and westward components. From simultaneous observations with the ground all-sky camera, we found that the footprint of LAMP at the 100 km altitude was located near the center of a pulsating auroral patch. The auroral patch had a dimension of ∼90 km in latitude and ∼25 km in longitude, and its major axis was inclined toward northwest. These observations were compared with results of a simple model calculation, in which local electron precipitation into the thin-layer ionosphere causes an elliptical auroral patch. The conductivity within the patch is enhanced in the background electric field and as a result, the magnetic field variations are induced around the auroral patch. The model calculation results can explain the MIM observations if the electric field points toward southeast and one of the model parameters is adjusted. We conclude that the pulsating auroral patch in this event was associated with a one-pair field-aligned current that consists of downward (upward) currents at the poleward (equatorward) edge of the patch. This current structure is maintained even if the auroral patch is latitudinally elongated.

Field Line Curvature (FLC) Scattering in the Dayside Off‐Equatorial Minima Regions

JGR:Space physics - Fri, 05/31/2024 - 14:51
Abstract

Magnetic field line curvature (FLC) scattering is an effective mechanism for collisionless particle scattering. In the terrestrial magnetosphere, the FLC scattering plays an essential role in shaping the outer boundary of protons radiation belt, the rapid decay of ring current, and the formation of proton isotropic boundary (IB). However, previous studies have yet to adequately investigate the influence of FLC scattering on charged particles in the Earth's dayside magnetosphere, particularly in the off-equatorial magnetic minima regions. This study employs T89 magnetic field model to investigate the impacts of FLC scattering on ring current protons in the dayside magnetosphere, with a specific focus on the off-equatorial minimum regions. We analyze the spatial distributions of single and dual magnetic minima regions, adiabatic parameter, and pitch angle diffusion coefficients due to FLC scattering as functions of Kp. The results show that the effects of FLC scattering are significant not only on the dusk and dawn sides but also in the off-equatorial minima regions on the noon. Additionally, we investigate the role of dipole tilt angle in the hemispheric asymmetry of FLC scattering effects. The dipole tilt angle controls the overall displacement of the dayside magnetosphere, resulting in different FLC scattering effects in the two hemispheres. Our study holds significance for understanding the FLC scattering effects in the off-equatorial region of Earth's dayside magnetosphere and for constructing a more accurate dynamic model of particles.

Estimation of the Contribution of the Ionospheric D Region to the TEC Value During a Series of Solar Flares in September 2017

JGR:Space physics - Fri, 05/31/2024 - 11:10
Abstract

The paper presents the results of a numerical assessment of the contribution of the ionospheric D region to the total electron content during six powerful X-ray flares that occurred in September 2017. The calculation of the electron concentration in the lower ionosphere was carried out using a plasma-chemical model of the ionospheric D region. This model was verified using the data of ground-based radiophysical measurements in the VLF (very low frequency) range and data of the incoherent scattering radar. To calculate the ionization rate at the D region heights, we used real data on the radiation flux measured by the GOES and SDO satellites during the considered flares. The total electron content was estimated using GNSS data. As a result of the analysis, it was found that the contribution of the lower ionosphere to the TEC change varied from 7% to 23% for flares with different spectra. A functional dependency has been obtained that can be used to estimate the contribution of the D region to the TEC increment depending on the spectrum of the flare.

Methanogenic Archaea as Catalysts for Magnetite Formation in Iron‐Rich Marine Sediments

JGR–Solid Earth - Fri, 05/31/2024 - 07:00
Abstract

Fine-grained authigenic magnetite has been recognized increasingly in iron-rich marine environments affected by methane seepage and is a major sedimentary magnetization source. However, it is unknown whether this magnetite forms via microbial or abiotic processes. We report here abundant fine magnetite crystals, in close association with goethite, within coarse-grained sediments from two adjacent methane seepage sites in the South China Sea. The magnetite- and goethite-rich horizons have sharply increased Zr/Ti, Zr/Rb, Ti/Al, and Fe/Al ratios, probably reflecting deposition by turbidity currents. Deeper intervals have elevated pyrite content, positive δ34S excursions of chromium reducible sulfur, and low magnetic susceptibilities, which is consistent with past sulfate-driven anaerobic oxidation of methane in environments with dynamically variable seepage intensity. In magnetically extracted aggregates (>63 μm), magnetite particles are mainly clustered euhedral crystals with 0.2–0.8 μm sizes, which will likely impact sedimentary magnetic signals. The fine, euhedral crystalline nature of the magnetite suggests formation in sulfide-free, ferrous iron-rich sedimentary environments. Based on 16S rRNA gene sequences, anaerobic methanotrophic archaea coincide with pyrite rich horizons. In contrast, two co-occurring methanogenic archaea groups of the Methanomicrobia class (mainly Methanosarcina and Methanocella) are particularly abundant in turbidites but have low abundance in all other horizons. Increased Methanomicrobia abundances suggest that this class of archaea may be involved in microbial iron reduction in turbidites with abundant goethite as a reactive iron source, and that they apparently trigger magnetite formation. Our findings provide new clues to microbial magnetite formation in iron-rich marine sediments.

River Ecomorphodynamic Models Exhibit Features of Nonlinear Dynamics and Chaos

GRL - Fri, 05/31/2024 - 07:00
Abstract

Modeling the nonlinear interactions between flow, sediment, and vegetation is essential for improving our understanding and prediction of river system dynamics. Using simple numerical models, we simulate the key flow-sediment-vegetation interaction where the disturbance is intrinsically generated by the presence of vegetation. In this case, biomass growth modifies the flow field, induces bed scour, and thus potentially causes vegetation uprooting when erosion exceeds root depth. Our results show that this nonlinear feedback produces deterministic chaos under a wide range of conditions, with complex aperiodic dynamics generated by a period-doubling route to chaos. Moreover, our results suggest relatively small values of Lyapunov time, spanning 2–4 growth-flood cycles, which significantly restrict the predictability of riverbed evolution. Although further spatial and temporal processes may add complexity to the system, these results call for the use of ensemble methods and associated uncertainty estimates in ecomorphodynamic models.

Why Do Oceanic Nonlinearities Contribute Only Weakly to Extreme El Niño Events?

GRL - Fri, 05/31/2024 - 07:00
Abstract

Extreme El Niño events have outsized global impacts and control the El Niño Southern Oscillation (ENSO) warm/cold phases asymmetries. Yet, a consensus regarding the relative contributions of atmospheric and oceanic nonlinearities to their genesis remains elusive. Here, we isolate the contribution of oceanic nonlinearities by conducting paired experiments forced with opposite wind stress anomalies in an oceanic general circulation model, which realistically simulates extreme El Niño events and oceanic nonlinearities thought to contribute to ENSO skewness (Tropical Instability Waves (TIWs), Nonlinear Dynamical Heating (NDH)). Our findings indicate a weak contribution of oceanic nonlinearities to extreme El Niño events in the eastern Pacific, owing to compensatory effects between lateral (NDH and TIWs) and vertical processes. These results hold across different vertical mixing schemes and modifications of the upper-ocean heat budget mixed layer criterion. Our study reinforces previous research underscoring the pivotal role of atmospheric nonlinearities in shaping extreme El Niño events.

Subnanosecond Electromagnetic Pulse Generated by a Long Spark Discharge: Lightning Implication

GRL - Fri, 05/31/2024 - 07:00
Abstract

The effects of generating pulsed radiation by a long spark discharge are important for the development of lightning models and applications related to lightning protection. In experiments with a Marx generator simulating a lightning discharge, we detected the radiation in the form of a single ultrawideband electromagnetic pulse (UWB EMP) about 200 ps in duration, and rising time about 100 ps. UWB EMP generation occurs during the breakdown of a “rod–rod” 4 m long gap. Pulses of almost unipolar shape are observed in more than half of all positive discharges. EMP emission occurs before the main stage, and corresponds to the start of the upward leader from a grounded electrode. In negative discharges, pulses are also observed, but less frequently and with a smaller amplitude. The UWB EMPs, given their large amplitude (more than 100 V/m at a distance of 90 m from the discharge), can be considered as possible new lightning damage factors.

Converging Findings of Climate Models and Satellite Observations on the Positive Impact of European Forests on Cloud Cover

JGR–Atmospheres - Fri, 05/31/2024 - 06:20
Abstract

Although afforestation is a potential strategy to mitigate climate change by sequestering carbon, its potential biophysical effects on climate, such as regulating surface albedo, evapotranspiration, and energy balance, have not been fully incorporated into climate change mitigation strategies. This is partly due to the challenges associated with modeling the complex bidirectional interactions between vegetation and climate. In this study, we assess the impact of afforestation on low cloud cover using a regional climate model (RCM) and Earth observation data, applying a space-for-time approach to overcome limitations that may arise from comparing satellite and RCM results, such as different background climate conditions or different extents of land cover change. Our results show a consistent increase in low cloud cover in Europe due to afforestation in both datasets (3.71% and 3.56% on average, respectively), but the magnitude and direction of this effect depend on various factors, including location, seasonality, and forest type. These results suggest that afforestation can have important feedbacks on the climate system, and that its biophysical effects must be considered in climate change mitigation strategies. Furthermore, we emphasize the role of the modeling community in developing accurate and reliable approaches to assess the biophysical effects of land cover change on climate.

The Role of Deposition of Cosmogenic 10Be for the Detectability of Solar Proton Events

JGR–Atmospheres - Fri, 05/31/2024 - 05:59
Abstract

The manifestation of extreme solar proton events (SPEs) in Beryllium-10 (10Be) ice core data contains valuable information about the strength and incidence of SPEs or local characteristics of the atmosphere. To extract this information, the signals of enhanced production of cosmogenic 10Be due to the SPEs have to be detected, hence distinguished from the variability of the background production by galactic cosmic rays (GCRs). Here, we study the transport and deposition of 10Be from GCRs, using the ECHAM/MESSy Atmospheric Chemistry climate model, and discuss the detectability of extreme SPEs (similar to the CE 774/775 SPE) in 10Be ice core data depending on the ice core location, seasonal appearance of the SPE, atmospheric aerosol size distribution and phase of the 11-year solar cycle. We find that sedimentation can be a major deposition mechanism of GCR generated 10Be, especially at high latitudes, depending on the aerosols to which 10Be attaches after production. The comparison of our results to four ice core records of 10Be from Greenland and Antarctica shows good agreement for both 10Be from GCRs and solar energetic particles (SEP). From our results we deduce that the location of detection and the season of occurrence of the SPE have a considerable effect on its detectability, as well as the aerosol size distribution the produced cosmogenic nuclides meet in the atmosphere. Furthermore, we find that SPEs occurring in the phase of highest activity during the 11-year solar cycle are more detectable than SPEs that arise in the phase of lowest activity.

Evaluation of Precipitation Forecast by the Operational China Meteorological Administration Mesoscale Model During the 2020 Meiyu Period

JGR–Atmospheres - Fri, 05/31/2024 - 05:09
Abstract

This study evaluated the precipitation forecast produced by the operational China Meteorological Administration Mesoscale model (CMA-MESO) during the “super violent” Meiyu season of 2020. Generally, CMA-MESO, which runs with ∼3-km-grid resolution, is able to reproduce the distribution and diurnal variation of precipitation. However, the precipitation amount is greatly overestimated, especially in eastern coastal areas of China. Precipitation in that region usually occurs with two peaks: one in the morning that mostly reflects organized precipitation systems, and the other in the afternoon generated mostly by local convection. Analyses showed that overestimation of low-level wind speed is the main reason for the overestimation of precipitation. CMA-MESO produces low-level winds that are overly strong, which greatly enhance the predicted convergence at night, leading to overestimation of precipitation. Additionally, the stronger wind speed increases the estimated transport of water vapor to the eastern coastal area, producing fake convection near the coastal mountains as the perturbed wind direction turns toward the mountain area in the afternoon. In comparison with ERA5, CMA-MESO tends to overestimate (underestimate) the temperature in the northwest (southeast), and the larger temperature gradient increases the pressure gradient, resulting in the stronger low-level wind speed.

Boundary Layer Structures Over the Northwest Atlantic Derived From Airborne High Spectral Resolution Lidar and Dropsonde Measurements During the ACTIVATE Campaign

JGR–Atmospheres - Thu, 05/30/2024 - 19:18
Abstract

The Planetary Boundary Layer height (PBLH) is essential for studying PBL and ocean-atmosphere interactions. Marine PBL is usually defined to include a mixed layer (ML) and a capping inversion layer. The ML height (MLH) estimated from the measurements of aerosol backscatter by a lidar was usually compared with PBLH determined from radiosondes/dropsondes in the past, as the PBLH is usually similar to MLH in nature. However, PBLH can be much greater than MLH for decoupled PBL. Here we evaluate the retrieved MLH from an airborne lidar (HSRL-2) by utilizing 506 co-located dropsondes during the ACTIVATE field campaign over the Northwest Atlantic from 2020 to 2022. First, we define and determine the MLH and PBLH from the temperature and humidity profiles of each dropsonde, and find that the MLH values from HSRL-2 and dropsondes agree well with each other, with a coefficient of determination of 0.66 and median difference of 18 m. In contrast, the HSRL-2 MLH data do not correspond to dropsonde-derived PBLH, with a median difference of −47 m. Therefore, we modify the current operational and automated HSRL-2 wavelet-based algorithm for PBLH retrieval, decreasing the median difference significantly to −8 m. Further data analysis indicates that these conclusions remain the same for cases with higher or lower cloud fractions, and for decoupled PBLs. These results demonstrate the potential of using HSRL-2 aerosol backscatter data to estimate both marine MLH and PBLH and suggest that lidar-derived MLH should be compared with radiosonde/dropsonde-determined MLH (not PBLH) in general.

Calibration of Optical Particle Spectrometers Using Mounted Fibres

Atmos. Meas. techniques - Thu, 05/30/2024 - 18:52
Calibration of Optical Particle Spectrometers Using Mounted Fibres
Jessica Girdwood, Harry Ballington, Chris Stopford, Rob Lewis, and Evelyn Hesse
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-55,2024
Preprint under review for AMT (discussion: open, 0 comments)
Optical particle spectrometers (OPSs) are a class of instruments, commonly used for measurement of particle size distributions, which require calibration. Conventionally, this is performed using a known aerosol source, which has reliability issues. In this paper, we present a technique for OPS calibration which involves placing objects in the instrument, which generate a known response. The fibre calibration was more reliable when the technique was compared with a conventional calibration.

A Portable Nitrogen Dioxide Instrument Using Cavity-Enhanced Absorption Spectroscopy

Atmos. Meas. techniques - Thu, 05/30/2024 - 18:52
A Portable Nitrogen Dioxide Instrument Using Cavity-Enhanced Absorption Spectroscopy
Steven A. Bailey, Reem A. Hannun, Andrew K. Swanson, and Thomas F. Hanisco
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-61,2024
Preprint under review for AMT (discussion: open, 1 comment)
We have developed a portable, optically based instrument that measures NO2. It consumes less than 6 watts of power so can easily run off a small battery. This instrument has made both balloon and UAV flights. NO2 measurement results compare favorably with other known NO2 instruments. We find this instrument to be stable with repeatable results compared with calibration sources. Materials cost to build a single instrument is around $4 k. This number could be lowered with economies of scale.

Multisectoral analysis of drought impacts and management responses to the 2008–2015 record drought in the Colorado Basin, Texas

Natural Hazards and Earth System Sciences - Thu, 05/30/2024 - 16:04
Multisectoral analysis of drought impacts and management responses to the 2008–2015 record drought in the Colorado Basin, Texas
Stephen B. Ferencz, Ning Sun, Sean W. D. Turner, Brian A. Smith, and Jennie S. Rice
Nat. Hazards Earth Syst. Sci., 24, 1871–1896, https://doi.org/10.5194/nhess-24-1871-2024, 2024
Drought has long posed an existential threat to society. Population growth, economic development, and the potential for more extreme and prolonged droughts due to climate change pose significant water security challenges. Better understanding the impacts and adaptive responses resulting from extreme drought can aid adaptive planning. The 2008–2015 record drought in the Colorado Basin, Texas, United States, is used as a case study to assess impacts and responses to severe drought.

Automating tephra fall building damage assessment using deep learning

Natural Hazards and Earth System Sciences - Thu, 05/30/2024 - 16:03
Automating tephra fall building damage assessment using deep learning
Eleanor Tennant, Susanna F. Jenkins, Victoria Miller, Richard Robertson, Bihan Wen, Sang-Ho Yun, and Benoit Taisne
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-81,2024
Preprint under review for NHESS (discussion: open, 0 comments)
After a volcanic eruption, assessing building damage quickly is vital for response and recovery. Traditional post-event damage assessment methods such as ground surveys, are often time-consuming and resource-intensive, hindering rapid response and recovery efforts. To overcome this, we have developed an automated approach that uses UAV acquired optical images and deep learning to rapidly generate spatial building damage information.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer