Feed aggregator

The Frictional‐Viscous Transition in Experimentally Deformed Granitoid Fault Gouge

JGR–Solid Earth - Mon, 07/29/2024 - 07:00
Abstract

In crustal faults dominated by granitoid gouges, the frictional-viscous transition marks a significant change in strength constraining the lower depth limit of the seismogenic zone. Dissolution-precipitation creep (DPC) may play an important role in initiating this transition, especially within polymineralic materials. Yet, it remains unclear to what extent DPC contributes to the weakening of granitoid gouge materials at the transition. Here we conducted sliding experiments on wet granitoid gouges to large displacement (15 mm), at an effective normal stress and pore fluid pressure of 100 MPa, at temperatures of 20–650°C, and at sliding velocities of 0.1–100 μm/s, which are relevant for earthquake nucleation. Gouge shear strengths were generally ∼75 MPa even at temperatures up to 650°C and at velocities >1 μm/s. At velocities ≤1 μm/s, strengths decreased at temperatures ≥450°C, reaching a minimum of 37 MPa at the highest temperature and lowest velocity condition. Microstructural observations showed that, as the gouges weakened, the strain localized into thin, dense, and ultrafine-grained (≤1 μm) principal slip zones, where nanopores were located along grain contacts and contained minute biotite-quartz-feldspar precipitates. The stress sensitivity exponent n decreased from a large number at 20°C to ∼2.2 at 650°C at the lowest velocities. These findings suggest that high temperature, slow velocity and small grain sizes promote DPC-accommodated granular flow over cataclastic frictional granular flow, leading to the observed weakening and strain localization. Field observations together with extrapolation suggest that DPC-induced weakening occurs at depths of 7–20 km depending on geothermal gradient.

Novel Comparison of Pyrocumulonimbus Updrafts to Volcanic Eruptions and Supercell Thunderstorms Using Optical Flow Techniques

JGR–Atmospheres - Sat, 07/27/2024 - 19:07
Abstract

Convective dynamics in a supercell thunderstorm, a volcanic eruption, and two pyrocumulonimbus (pyroCb) events are compared by computing cloud-top divergence (CTD) with an optical flow technique called Deepflow. Visible 0.64-μm imagery sequences from Geostationary Operational Environmental Satellites (GOES)-R series Advanced Baseline Imager (ABI) are used as input into the optical flow algorithm. CTD is computed after post-processing of the retrieved motions. Analysis is performed on specific image times, as well as the full time series of each case. Multiple CTD-based parameters, such as the maximum and the two-dimensional area exceeding a specified CTD threshold, are examined along with the optical flow-retrieved wind speed. CTD is shown to accurately and quantitatively represent the behavior and magnitude of different deep convective phenomena, including distinguishing between convective pulses within each individual event. CTD captures updraft intensification as well as differences in convective activity between two pyroCb events and individual updraft pulses occurring within a single pyroCb event. Finally, the characteristics of high-altitude smoke plumes injected by two separate pyroCb pulses are linked to CTD using ultraviolet aerosol index and satellite imagery. Optical flow-derived parameters can therefore be applied to individual pyroCbs in real-time, with potential to characterize pyroCb smoke source inputs for downstream smoke modeling applications and to facilitate future tools supporting air quality modeling and firefighting efforts.

Using Iron Stable Isotopes to Quantify the Origins of the Cryoconite Iron Materials in Western China and Exploring Controlling Factors

JGR–Atmospheres - Sat, 07/27/2024 - 19:05
Abstract

Iron (Fe) has profound impacts on Earth's ecosystem and global biogeochemical cycles. Fe deposited onto glacier surfaces reduces snow and ice albedo, thereby accelerating glacier melting, and supplying downstream ecosystems with dissolved Fe. However, the origins of atmospheric Fe deposition in glacier regions of western China remain unclear. This study presents novel insights into Fe isotopic composition (refer to δ56Fe) and origins, gained from geochemical analysis of large-scale cryoconite samples collected from glaciers in western China, which encompass the Tibetan Plateau (TP) and the Tianshan Mountains. Results showed that cryoconite δ56Fe ranged from −1.06 ± 0.07‰ to 0.33 ± 0.04‰, regardless of their concentration. Moreover, anomalous δ56Fe values deviating significantly from the upper continental crust values (with an average of 0.09‰) were detected, indicating a significant impact of anthropogenic Fe materials on the investigated glaciers. This impact was particularly prominent in the margin regions of the TP and its surroundings, but was less apparent in the interior and southern of the plateau. Using MixSIAR isotope mixing model, we determined that coal combustion and other anthropogenic combustion sources (such as liquid fuel combustion and steel smelting) contributed to cryoconite Fe in the range of 6.9%–43.1% and 0.8%–23.4%, respectively. Among these, coal combustion was the predominant anthropogenic source of cryoconite Fe in western China's glaciers. Compared with other sink areas in the Northern Hemisphere, glaciers in western China are obviously affected by anthropogenically sourced Fe. This study has significant implications for understanding glacier-fed downstream ecosystems and the regional biogeochemical cycle.

New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2

Geoscientific Model Development - Fri, 07/26/2024 - 18:57
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, 2024
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.

A measurement system for CO2 and CH4 emissions quantification of industrial sites using a new in situ concentration sensor operated on board uncrewed aircraft vehicles

Atmos. Meas. techniques - Fri, 07/26/2024 - 15:45
A measurement system for CO2 and CH4 emissions quantification of industrial sites using a new in situ concentration sensor operated on board uncrewed aircraft vehicles
Jean-Louis Bonne, Ludovic Donnat, Grégory Albora, Jérémie Burgalat, Nicolas Chauvin, Delphine Combaz, Julien Cousin, Thomas Decarpenterie, Olivier Duclaux, Nicolas Dumelié, Nicolas Galas, Catherine Juery, Florian Parent, Florent Pineau, Abel Maunoury, Olivier Ventre, Marie-France Bénassy, and Lilian Joly
Atmos. Meas. Tech., 17, 4471–4491, https://doi.org/10.5194/amt-17-4471-2024, 2024
We present a top-down approach to quantify CO2 and CH4 emissions at the scale of an industrial site, based on a mass balance model relying on atmospheric concentrations measurements from a new sensor embarked on board uncrewed aircraft vehicles (UAVs). We present a laboratory characterization of our sensor and a field validation of our quantification method, together with field application to the monitoring of two real-world offshore oil and gas platforms.

A Bias Correction Scheme for FY-3E/ HIRAS-II Observation Data Assimilation

Atmos. Meas. techniques - Fri, 07/26/2024 - 15:45
A Bias Correction Scheme for FY-3E/ HIRAS-II Observation Data Assimilation
Hongtao Chen and Li Guan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-65,2024
Preprint under review for AMT (discussion: open, 0 comments)
In order to correctly assimilate satellite radiance observations in data assimilation systems, the systematic observation biases must be corrected to conform to a Gaussian normal distribution with a mean of 0.In this paper, a two-step bias correction scheme is established based on radiation observations of HIRAS-II (Hyperspectral Infrared Atmospheric Sounder-II) carried on FY-3E.

Harmonizing seismicity information in Central Asian countries: earthquake catalogue and active faults

Natural Hazards and Earth System Sciences - Fri, 07/26/2024 - 15:00
Harmonizing seismicity information in Central Asian countries: earthquake catalogue and active faults
Valerio Poggi, Stefano Parolai, Natalya Silacheva, Anatoly Ischuk, Kanatbek Abdrakhmatov, Zainalobudin Kobuliev, Vakhitkhan Ismailov, Roman Ibragimov, Japar Karaev, Paola Ceresa, and Paolo Bazzurro
Nat. Hazards Earth Syst. Sci., 24, 2597–2613, https://doi.org/10.5194/nhess-24-2597-2024, 2024
As part of the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) programme, funded by the European Union in collaboration with the World Bank and GFDRR, a regionally consistent probabilistic multi-hazard and multi-asset risk assessment has been developed. This paper describes the preparation of the input datasets (earthquake catalogue and active-fault database) required for the implementation of the probabilistic seismic hazard model.

ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors

Geoscientific Model Development - Fri, 07/26/2024 - 14:56
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, 2024
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.

Methane Emissions From Seabed to Atmosphere in Polar Oceans Revealed by Direct Methane Flux Measurements

JGR–Atmospheres - Fri, 07/26/2024 - 09:40
Abstract

Sea-air methane flux was measured directly by the eddy-covariance method across approximately 60,000 km of Arctic and Antarctic cruises during a number of summers. The Arctic Ocean (north of 60°N, between 20°W and 50°E) and Southern Ocean (south of 50°S, between 70°W and 30°E) are found to be on-shelf sources of atmospheric methane with mean sea-air fluxes of 9.17 ± 2.91 (SEM (standard error of the mean)) μmol m−2 d−1 and 8.98 ± 0.91 μmol m−2 d−1, respectively. Off-shelf, this region of the Arctic Ocean is found to be a source of methane (mean flux of 2.39 ± 0.68 μmol m−2 d−1), while this region of the Southern Ocean is found to be a methane sink (mean flux of −0.77 ± 0.37 μmol m−2 d−1). The highest fluxes observed are found around west Svalbard, South Georgia, and South Shetland Islands and Bransfield Strait; areas with evidence of the presence of methane flares emanating from the seabed. Hence, this study may provide evidence of direct emission of seabed methane to the atmosphere in both the Arctic and Antarctic. Comparing with previous studies, the results of this study may indicate an increase in sea-air flux of methane in areas with seafloor seepage over timescales of several decades. As climate change exacerbates rising water temperatures, continued monitoring of methane release from polar oceans into the future is crucial.

Electrical Resistivity Imaging of the Northeast Carpathian Volcanic Arc With 3‐D Magnetotellurics Reveals Shallow Hydrothermal System

JGR–Solid Earth - Fri, 07/26/2024 - 07:04
Abstract

The Carpathian belt is one of Europe's major metallogenic provinces, where magmatic ore mineralization is associated with the past subduction environment. The upper crust is mapped for the first time in the Northeast Carpathian Volcanic Arc using magnetotelluric data inversion. The obtained 3-D electrical resistivity model is interpreted in conjunction with geological information and magnetic anomaly data. The model illustrates the deep magmatic plumbing system including kilometer-scale plutonic bodies at a depth of 2–7 km. The model implies that the transport of magma and fluids in the uppermost crust was controlled by pre-existing faults and décollement horizons. Present ore mineralization, mined since historical times, can be attributed to an electrically conductive conduit that is mapped from the surface to a depth of about 30 km. It is suggested that this conduit connected a shallow magmatic chamber to a deep source region in the southeast during late Miocene time. An observed northwest deflection of the deep magmatic conduit at a depth of more than 10 km may explain the spatial gap in the distribution of the Miocene volcanic activity along the Eastern Carpathians.

Source of the Observed Enhancements in Thermospheric ΣO/N2 During Two Solar Eclipses in 2023

JGR:Space physics - Fri, 07/26/2024 - 07:00
Abstract

Two solar eclipse events in 2023 appeared to produce considerable enhancements in the thermospheric column density ratio of monatomic oxygen to molecular nitrogen (ΣO/N2) as measured by TIMED GUVI. We quantify potential sources for eclipse-induced ΣO/N2 changes and find that the observed enhancements arise from the ionospheric O+ radiative recombination contribution to the OI 135.6 nm emission from which ΣO/N2 is derived. Variations in the solar Extreme Ultra Violet (EUV) and X-ray spectrum, due to the difference between the disk spectrum and the coronal spectrum, are also considered but shown to have negligible contributions to the ΣO/N2 enhancements. After accounting for the radiative recombination contribution, we constrain the real thermospheric compositional change to the uncertainty level of the measurements of 5%–10%. These results are valuable for the interpretation of eclipse-induced ΣO/N2 changes that will further first-principle model comparisons and lead to a better understanding of the response of the thermosphere to localized variations in solar EUV and X-ray forcing.

Pole‐To‐Pole Ionospheric Disturbances Due To Solar Flares, During Low Solar Activity

JGR:Space physics - Fri, 07/26/2024 - 07:00
Abstract

There are growing concerns about the effect of solar flares on the ionosphere, mainly due to possible deterioration or damage to our communication and navigation satellite systems. On 3 July 2021, and 28 October 2021, there were solar flares (SFs) classified as X1.59 and X1.0, respectively. These two SFs were the only ones of X-class that occurred during the last low solar activity (LSA:2018–2021). Data from magnetometers and Global Positioning System (GPS)—Total Electron Content (TEC) are used to investigate the spatial-temporal electrodynamics of the ionosphere from pole-to-pole in the American sector. Employing ∆H and vertical TEC, along with the ROT (rate of change of VTEC) parameter. Rapidly ∆H disturbances closely follow the X-ray variation and the ∆H valleys and peaks are well-synchronized during the SFs, indicating that they are linked. Major disturbances in the ∆H are noticed in the mid-low-equatorial latitudes. However, minor disturbances were seen at high latitudes. Also, |ROT| is a good indicator of the electron density changes during the SFs, especially when the X-ray intensity rises to the peak.

Flood occurrence and impact models for socioeconomic applications over Canada and the United States

Natural Hazards and Earth System Sciences - Fri, 07/26/2024 - 04:08
Flood occurrence and impact models for socioeconomic applications over Canada and the United States
Manuel Grenier, Mathieu Boudreault, David A. Carozza, Jérémie Boudreault, and Sébastien Raymond
Nat. Hazards Earth Syst. Sci., 24, 2577–2595, https://doi.org/10.5194/nhess-24-2577-2024, 2024
Modelling floods at the street level for large countries like Canada and the United States is difficult and very costly. However, many applications do not necessarily require that level of detail. As a result, we present a flood modelling framework built with artificial intelligence for socioeconomic studies like trend and scenarios analyses. We find for example that an increase of 10 % in average precipitation yields an increase in displaced population of 18 % in Canada and 14 % in the US.

Solar Energetic Electron Access to the Moon Within the Terrestrial Magnetotail and Shadowing by the Lunar Surface

GRL - Thu, 07/25/2024 - 20:39
Abstract

We present measurements of 30–700 keV Solar Energetic Electrons (SEEs) near the Moon when within the terrestrial magnetotail by the Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun spacecraft. Despite their detection deep within the tail, the incident flux and spectral shape of these electrons are nearly identical to measurements taken upstream of Earth in the solar wind by the Wind spacecraft; however, their pitch angle distribution is isotropized compared to the more field-aligned distribution upstream. We illustrate that SEEs initially traveling Earthward precipitate onto the lunar far-side, generating extended shadows in the cis-lunar electron distribution. By modeling the dynamics of these electrons, we show that their precipitation patterns on the lunar near-side are comparatively reduced. The non-uniform precipitation and accessibility of potentially hazardous electrons to the Moon's surface are highly relevant in the context of astronaut safety during the planned exploration of the lunar environment.

Assessing Subsurface Gas Storage Security for Climate Change Mitigation and Energy Transition

GRL - Thu, 07/25/2024 - 19:29
Abstract

Subsurface gas storage is crucial for achieving a sustainable energy future, as it helps to reduce CO2 emissions and facilitates the provision of renewable energy sources. The confinement effect of the nanopores in caprock induces distinctive thermophysical properties and fluid dynamics. In this paper, we present a multi-scale study to characterize the subsurface transport of CO2, CH4, and H2. A nanoscale-extended volume-translated Cubic-Plus-Association equation of state was developed and incorporated in a field-scale numerical simulation, based on a full reservoir-caprock suite model. Results suggest that in the transition from nanoscale to bulk-scale, gas solubility in water decreases while phase density and interfacial tension increase. For the first time, a power law relationship was identified between the capillary pressure within nanopores and the pore size. Controlled by buoyancy, viscous force and capillary pressure, gases transport vertically and horizontally in reservoir and caprock. H2 has the maximum potential to move upward and the lowest areal sweep efficiency; in short term, CH4 is more prone to upward migration compared to CO2, while in long term, CH4 and CO2 perform comparably. Thicker caprock and larger caprock pore size generally bring greater upward inclination. Gases penetrate the caprock when CH4 is stored with a caprock thickness smaller than 28 m or H2 is stored with a caprock pore size of 2–10 nm or larger than 100 nm. This study sheds light on the fluid properties and dynamics in nanoconfined environment and is expected to contribute to the safe implementation of gigatonne scale subsurface gas storage.

Efficient Organic Carbon Burial by Bottom Currents in the Ocean: A Potential Role in Climate Modulation

GRL - Thu, 07/25/2024 - 19:27
Abstract

Bottom currents play a major role in deep-sea sedimentation, but their significance in the burial of organic carbon is poorly quantified at a global scale. Here we show that Holocene fluxes of organic carbon into the contourite drifts are high, with a global average of 0.09 g cm−2 Kyr−1. At individual drift sites, fluxes are commonly 1–2 orders of magnitude greater than rates in surrounding areas and in global depth-similar zones. These high fluxes of organic carbon into the contourite drifts are due to high rates of sedimentation. Over the past 50 million years, sedimentation rates at the studied contourite drift sites have overall increased, coincident with decreasing atmospheric CO2 and a cooling global climate. Our work suggests that a ramp-up of the bottom-current carbon pump has accelerated removal of CO2 from the atmosphere and oceanic water, thus contributing to the overall global cooling after the Eocene Thermal Maximum.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer