Feed aggregator

A Study on the Possible Brown Ocean Effect: Impacts of an Antecedent Tropical Cyclone on the Rapid Intensification of the 1999 Odisha Supercyclone

JGR–Atmospheres - Tue, 06/11/2024 - 19:15
Abstract

Odhisa, a state of India, bore the disastrous consequences of two consequent Tropical Cyclones (TCs), TC 04B and TC 05B (Odisha 1999 supercyclone), which formed over the Bay of Bengal and experienced landfall in October 1999, with a time gap of fewer than two weeks, over the same region. It is suggested that the first TC, TC 04B, provided an “ocean-like situation” over the coastal land region, thus delivering the appropriate land conditions that would facilitate the intensification of the following second tropical cyclone, TC 05B; a clear illustration of the “Brown Ocean effect.” Two Weather Research Forecasting (WRF) simulations were conducted, with the control and experimental runs differing solely in the following aspect: the initial cyclonic vortex corresponding to the first TC at the initial time was removed in the experimental run, whereas it was retained in the control run. Both simulations were analyzed to reveal the “Brown Ocean Effect” role. The experimental run result indicates that the minimum central sea level pressure of the second TC was 35 hPa higher than the second TC simulation in the control run. The heavy rainfall associated with TC 04B led to increased soil moisture conditions, providing the second TC (TC 05B) with the necessary conditions for its intensification by the “Brown Ocean Effect.” The results of this study appear to strongly suggest that the “Brown Ocean Effect” could provide one of the main reasons for the extraordinary intensities associated with the 1999 Odisha supercyclone.

Inorganic Nitrogen Gas‐Aerosol Partitioning in and Around Animal Feeding Operations in Northeastern Colorado in Late Summer 2021

JGR–Atmospheres - Tue, 06/11/2024 - 19:03
Abstract

Ammonia (NH3) from animal feeding operations (AFOs) is an important source of reactive nitrogen in the US, but despite its ramifications for air quality and ecosystem health, its near-source evolution remains understudied. To this end, Phase I of the Transport and Transformation of Ammonia (TRANS2Am) field campaign was conducted in the northeastern Colorado Front Range in summer 2021 and characterized atmospheric composition downwind of AFOs during 10 research flights. Airborne measurements of NH3, nitric acid (HNO3), and a suite of water-soluble aerosol species collected onboard the University of Wyoming King Air research aircraft present an opportunity to investigate the sensitivity of particulate matter (PM) formation to AFO emissions. We couple the observations with thermodynamic modeling to predict the seasonality of ammonium nitrate (NH4NO3) formation. We find that during TRANS2Am northeastern Colorado is consistently in the NH3-rich and HNO3-limited NH4NO3 formation regime. Further investigation using the Extended Aerosol Inorganics Model reveals that summertime temperatures (mean: 23°C) of northeastern Colorado, especially near the surface, inhibit NH4NO3 formation despite high NH3 concentrations (max: ≤114 ppbv). Finally, we model spring/autumn and winter conditions to explore the seasonality of NH4NO3 formation and find that cooler temperatures could support substantially more NH4NO3 formation. Whereas NH4NO3 only exceeds 1 μg m−3 ∼10% of the time in summer, modeled NH4NO3 would exceed 1 μg m−3 61% (88%) of the time in spring/autumn (winter), with a 10°C (20°C) temperature decrease relative to the campaign.

Climatic characteristics of the Jianghuai cyclone and its linkage with precipitation during the Meiyu period from 1961 to 2020

Natural Hazards and Earth System Sciences - Tue, 06/11/2024 - 18:54
Climatic characteristics of the Jianghuai cyclone and its linkage with precipitation during the Meiyu period from 1961 to 2020
Ran Zhu and Lei Chen
Nat. Hazards Earth Syst. Sci., 24, 1937–1950, https://doi.org/10.5194/nhess-24-1937-2024, 2024
There is a positive correlation between the frequency of Jianghuai cyclone activity and precipitation during the Meiyu period. Its occurrence frequency has an obvious decadal variation, which corresponds well with the quasi-periodic and decadal variation in precipitation during the Meiyu period. This study provides a reference for the long-term and short-term forecasting of precipitation during the Meiyu period.

Tangible and intangible ex-post assessment of flood-induced damages to cultural heritage

Natural Hazards and Earth System Sciences - Tue, 06/11/2024 - 18:43
Tangible and intangible ex-post assessment of flood-induced damages to cultural heritage
Claudia De Lucia, Michele Amaddii, and Chiara Arrighi
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-104,2024
Preprint under review for NHESS (discussion: open, 1 comment)
The work describes the flood damages to cultural heritage (CH) occurred in the event of September 2022 in Central Italy. Datasets related to flood impacts to cultural heritage are rare and this work aims at highlighting both tangible and intangible aspects and their correlation with physical characteristics of the flood, i.e., water depth and flow velocity. The results show that current knowledge and datasets are inadequate for risk assessment of CH.

Issue Information

JGR–Atmospheres - Tue, 06/11/2024 - 18:42

No abstract is available for this article.

In-flight characterization of a compact airborne quantum cascade laser absorption spectrometer

Atmos. Meas. techniques - Tue, 06/11/2024 - 18:37
In-flight characterization of a compact airborne quantum cascade laser absorption spectrometer
Linda Ort, Lenard Lukas Röder, Uwe Parchatka, Rainer Königstedt, Daniel Crowley, Frank Kunz, Ralf Wittkowski, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 17, 3553–3565, https://doi.org/10.5194/amt-17-3553-2024, 2024
Airborne in situ measurements are of great importance to collect valuable data to improve our knowledge of the atmosphere but also present challenges which demand specific designs. This study presents an IR spectrometer for airborne trace-gas measurements with high data efficiency and a simple, compact design. Its in-flight performance is characterized with the help of a test flight and a comparison with another spectrometer. Moreover, results from its first campaign highlight its benefits.

Direct high-precision radon quantification for interpreting high frequency greenhouse gas measurements

Atmos. Meas. techniques - Tue, 06/11/2024 - 18:37
Direct high-precision radon quantification for interpreting high frequency greenhouse gas measurements
Dafina Kikaj, Edward Chung, Alan D. Griffiths, Scott D. Chambers, Grant Foster, Angelina Wenger, Penelope Pickers, Chris Rennick, Simon O'Doherty, Joseph Pitt, Kieran Stanley, Dickon Young, Leigh S. Fleming, Karina Adcock, and Tim Arnold
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-54,2024
Preprint under review for AMT (discussion: open, 0 comments)
We present a protocol to enhance confidence in reported atmospheric radon measurements, enabling direct comparisons between sites and integration with GHG measurements. Radon, a natural atmospheric tracer, provides an independent evaluation of transport model performance. The standardized approach ensures radon's use as a metric for model evaluation. Applicable beyond UK observatories, this protocol can benefit larger networks like ICOS or GAW, advancing atmospheric studies worldwide.

Issue Information

GRL - Tue, 06/11/2024 - 18:32

No abstract is available for this article.

Comprehensive Air Quality Model With Extensions, v7.20: Formulation and Evaluation for Ozone and Particulate Matter Over the US

Geoscientific Model Development - Tue, 06/11/2024 - 18:25
Comprehensive Air Quality Model With Extensions, v7.20: Formulation and Evaluation for Ozone and Particulate Matter Over the US
Christopher A. Emery, Kirk R. Baker, Gary M. Wilson, and Greg Yarwood
Geosci. Model Dev. Discuss., https//doi.org/10.5194/gmd-2024-48,2024
Preprint under review for GMD (discussion: open, 0 comments)
We describe the Comprehensive Air quality Model with extensions (CAMx) and evaluate a model simulation during 2016 over nine U.S. climate zones. For ozone, the model statistically replicates measured concentrations better than most other past models and applications. For small inhalable particulates, the model replicates concentrations consistent with most other past models and applications subject to common uncertainties associated with sources, weather, and chemical interactions.

Development of the MPAS-CMAQ Coupled System (V1.0) for Multiscale Global Air Quality Modeling

Geoscientific Model Development - Tue, 06/11/2024 - 18:25
Development of the MPAS-CMAQ Coupled System (V1.0) for Multiscale Global Air Quality Modeling
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev. Discuss., https//doi.org/10.5194/gmd-2024-52,2024
Preprint under review for GMD (discussion: open, 0 comments)
This work describe how we linked meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction in a global scale. This new model scales well on high performance computing environment and performs well with respect to ground surface networks in terms of ozone and PM2.5.

Kinetic‐Scale Current Sheets in the Solar Wind at 5 AU

JGR:Space physics - Tue, 06/11/2024 - 12:21
Abstract

We present statistical analysis of 16,903 current sheets (CSs) observed over 641 days aboard Ulysses spacecraft at 5 AU. We show that the magnetic field rotates across CSs through some shear angle, while only weakly varies in magnitude. The CSs are typically asymmetric with statistically different, though only by a few percent, magnetic field magnitudes at the CS boundaries. The data set is classified into about 90.6% non-bifurcated and 9.4% bifurcated CSs. Most of the CSs are proton kinetic-scale structures with the half-thickness of non-bifurcated and bifurcated CSs within respectively 200–2,000 km and 500–5,000 km or 0.5–5λ p and 0.7–15λ p in units of local proton inertial length. The amplitude of the current density, mostly parallel to magnetic field, is typically within 0.05–0.5 nA/m2 or 0.04–0.4J A in units of local Alfvén current density. The CSs demonstrate approximate scale-invariance with the shear angle and current density amplitude scaling with the half-thickness, Δθ≈16.6°λ/λp0.34 ${\Delta }\theta \approx 16.6{}^{\circ}\,{\left(\lambda /{\lambda }_{p}\right)}^{0.34}$ and J0/JA≈0.14λ/λp−0.66 ${J}_{0}/{J}_{A}\approx 0.14\,{\left(\lambda /{\lambda }_{p}\right)}^{-0.66}$. The matching of the magnetic field rotation and compressibility observed within the CSs against those in ambient solar wind indicate that the CSs are produced by turbulence, inheriting its scale-invariance and compressibility. The estimated asymmetry in plasma beta between the CS boundaries is shown to be insufficient to suppress magnetic reconnection through the diamagnetic drift of X-line. The presented results will be of value for future comparative analysis of CSs observed at different distances from the Sun.

Observed impact of the GNSS clock data rate on Radio Occultation bending angles for Sentinel-6A and COSMIC-2

Atmos. Meas. techniques - Tue, 06/11/2024 - 11:15
Observed impact of the GNSS clock data rate on Radio Occultation bending angles for Sentinel-6A and COSMIC-2
Sebastiano Padovan, Axel Von Engeln, Saverio Paolella, Yago Andres, Chad R. Galley, Riccardo Notarpietro, Veronica Rivas Boscán, Francisco Sancho, Francisco Martin Alemany, Nicolas Morew, and Christian Marquardt
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-80,2024
Preprint under review for AMT (discussion: open, 0 comments)
Radio Occultation (RO) measurements are an important contribution to numerical weather predictions and long-term climate studies. Using more than a hundred thousand occultations recorded by instruments onboard the Sentinel-6A and Cosmic-2 satellites, this work studies the effects of the clock data rate of the Global Navigation Satellite System on the RO data quality. GLONASS occultations benefit of high-rate clock data (1 second), GPS occultation have high quality already at 30 seconds.

JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE CPR, ATLID and MSI

Atmos. Meas. techniques - Tue, 06/11/2024 - 11:15
JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE CPR, ATLID and MSI
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-99,2024
Preprint under review for AMT (discussion: open, 0 comments)
This study introduces the JAXA EarthCARE L2 cloud product using satellite observations and simulated EarthCARE data. The outputs from the product feature a 3D global view of the dominant ice habit categories and corresponding microphysics. Habit and size distribution transitions from cloud to precipitation will be quantified by the L2 cloud algorithms. With Doppler data, the products can be beneficial for further understanding of the coupling of cloud microphysics, radiation, and dynamics.

Brief communication: SWM – stochastic weather model for precipitation-related hazard assessments using ERA5-Land data

Natural Hazards and Earth System Sciences - Tue, 06/11/2024 - 11:12
Brief communication: SWM – stochastic weather model for precipitation-related hazard assessments using ERA5-Land data
Melody Gwyneth Whitehead and Mark Stephen Bebbington
Nat. Hazards Earth Syst. Sci., 24, 1929–1935, https://doi.org/10.5194/nhess-24-1929-2024, 2024
Precipitation-driven hazards including floods, landslides, and lahars can be catastrophic and difficult to forecast due to high uncertainty around future weather patterns. This work presents a stochastic weather model that produces statistically similar (realistic) rainfall over long time periods at minimal computational cost. These data provide much-needed inputs for hazard simulations to support long-term, time and spatially varying risk assessments.

The Thermal Conductivity of Bridgmanite at Lower Mantle Conditions Using a Multi‐Technique Approach

JGR–Solid Earth - Tue, 06/11/2024 - 07:50
Abstract

The thermal conductivity of bridgmanite, the primary constituent of the Earth's lower mantle, has been investigated using diamond anvil cells at pressures up to 85 GPa and temperatures up to 3,100 K. We report the results of time-domain optical laser flash heating and X-ray Free Electron Laser heating experiments from a variety of bridgmanite samples with different Al and Fe contents. The results demonstrate that Fe or Fe,Al incorporation in bridgmanite reduces thermal conductivity by about 50% in comparison to end-member MgSiO3 at the pressure-temperature conditions of Earth's lower mantle. The effect of temperature on the thermal conductivity at 28–60 GPa is moderate, well described as k=k300(300/T)a ${k={k}_{300}(300/T)}^{a}$, where a is 0.2–0.5. The results yield thermal conductivity of 7.5–15 W/(m × K) in the thermal boundary layer of the lowermost mantle composed of Fe,Al-bearing bridgmanite.

How the Ionosphere Responds Dynamically to Magnetospheric Forcing

GRL - Tue, 06/11/2024 - 07:00
Abstract

Ground magnetic field variations have been used to investigate ionospheric dynamics for more than a century. They are usually explained in terms of an electric circuit in the ionosphere driven by an electric field, but this is insufficient to explain how magnetic field disturbances are dynamically established. Here we explain and simulate how the ionosphere dynamically responds to magnetospheric forcing and how it leads to magnetic field deformation via Faraday's law. Our approach underscores the causal relationships, treating the magnetic field and velocity as primary variables (the B, v paradigm), whereas the electric field and current are derived, in contrast to the E, j paradigm commonly used in ionospheric physics. The simulation approach presented here could be used as an alternative to existing circuit-based numerical models of magnetosphere-ionosphere coupling.

Potential Ozone Depletion From Satellite Demise During Atmospheric Reentry in the Era of Mega‐Constellations

GRL - Tue, 06/11/2024 - 07:00
Abstract

Large constellations of small satellites will significantly increase the number of objects orbiting the Earth. Satellites burn up at the end of service life during reentry, generating aluminum oxides as the main byproduct. These are known catalysts for chlorine activation that depletes ozone in the stratosphere. We present the first atomic-scale molecular dynamics simulation study to resolve the oxidation process of the satellite's aluminum structure during mesospheric reentry, and investigate the ozone depletion potential from aluminum oxides. We find that the demise of a typical 250-kg satellite can generate around 30 kg of aluminum oxide nanoparticles, which may endure for decades in the atmosphere. Aluminum oxide compounds generated by the entire population of satellites reentering the atmosphere in 2022 are estimated at around 17 metric tons. Reentry scenarios involving mega-constellations point to over 360 metric tons of aluminum oxide compounds per year, which can lead to significant ozone depletion.

Climate Change Is Leading to a Convergence of Global Climate Distribution

GRL - Tue, 06/11/2024 - 07:00
Abstract

The impact of changes in global temperatures and precipitation on climate distribution remains unclear. Taking the annual global average temperatures and precipitation as the origin, this study determined the climate distribution with the distances of temperature and precipitation from their global averages as the X and Y axes. The results showed that during 1980–2019, the global temperature distribution converged toward the mean (convergence), while the precipitation distribution moved away from the mean (divergence). The combined effects of both led to a convergence in the global climate distribution. During 2025–2100, significant climate convergence is observed under two emission scenarios (SSP245 and SSP585). However, the climate convergence and the area of change in climate type remains insignificant only under SSP126, suggesting that the diversity of the global climate pattern can be maintained under a sustainable emission pathway (SSP126), whereas high emission pathways will lead to greater uniformity in global climate.

Associative Electron Detachment in Sprites

GRL - Tue, 06/11/2024 - 07:00
Abstract

The balance of processes affecting electron density drives the dynamics of upper-atmospheric electrical events, such as sprites. We examine the detachment of electrons from negatively charged atomic oxygen (O−) via collisions with neutral molecular nitrogen (N2) leading to the formation of nitrous oxide (N2O). Past research posited that this process, even without significant vibrational excitation of N2, strongly impacts the dynamics of sprites. We introduce updated rate coefficients derived from recent experimental measurements which suggest a negligible influence of this reaction on sprite dynamics. Given that previous rates were incompatible with the observed decay of the light emissions from sprite glows, our findings support that glows actually result from electron depletion in sprite columns.

Mapping Glacier Structure in Inaccessible Areas From Turning Seismic Sources Into a Dense Seismic Array

GRL - Tue, 06/11/2024 - 07:00
Abstract

Understanding glaciers structural heterogeneity is crucial for assessing their fate. Yet, places where structure changes are strong, such as crevasses fields, are often inaccessible for direct instrumentation. To overcome this limitation, we introduce an innovative technique that transforms seismic sources, here generated by crevasses, into virtual receivers using source-to-receiver spatial reciprocity. We demonstrate that phase interference patterns between well-localized seismic sources can be leveraged to retrieve phase velocity maps using Seismic Michelson Interferometry. The obtained phase velocity exhibits sensitivity to changes in glacier structure, offering insights into the origins of mechanical property changes, with spatial resolution surpassing traditional methods by a factor of five. In particular, we observe sharp variations in phase velocity related to strongly damaged subsurface areas indicating a complex 3-D medium. Applying this method more systematically and in other contexts will enhance our understanding of the structure of glaciers and other seismogenic environments.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer