GRL

Syndicate content Wiley: Geophysical Research Letters: Table of Contents
Table of Contents for Geophysical Research Letters. List of articles from both the latest and EarlyView issues.
Updated: 16 weeks 6 hours ago

Field‐Aligned Current Structures During the Terrestrial Magnetosphere's Transformation Into Alfvén Wings and Recovery

Fri, 07/05/2024 - 05:59
Abstract

On 24 April 2023, a Coronal Mass Ejection event caused the solar wind to become sub-Alfvénic, leading to the development of an Alfvén Wing configuration in the Earth's magnetosphere. Alfvén Wings have previously been observed as cavities of low flow around moons in Jupiter's and Saturn's magnetospheres, but the observing spacecraft did not have the ability to directly measure the Alfvén Wings' current structures. Through in situ measurements made by the Magnetospheric Multiscale spacecraft, the 24 April event provides us with the first direct measurements of current structures during an Alfvén Wing configuration. These structures are observed to be significantly more anti-field-aligned and electron-driven than the typical diamagnetic magnetopause current, indicating the disruption caused to the magnetosphere current system by the Alfvén Wing formation. The magnetopause current is then observed to recover more of its typical, perpendicular structure during the magnetosphere's recovery from the Alfvén Wing formation.

Co‐Benefits of Mitigating Aerosol Pollution to Future Solar and Wind Energy in China Toward Carbon Neutrality

Fri, 07/05/2024 - 05:56
Abstract

The climate commitment to achieving carbon neutrality before 2060 in China has been announced recently. In the context of pursuing carbon neutrality, sharing similar sources as greenhouse gases, aerosol particle and precursor emissions are projected to substantially decrease in China, which can potentially have a great impact on climate. Here, we investigate the effects of future aerosol reductions, because of achieving carbon neutrality, on solar and wind energy in China by using an earth system model. We show that significant reductions in aerosol emissions, particularly in eastern China, lead to increases in the surface downwelling shortwave radiation, surface air temperature and wind speed, which can further enhance the potential of solar and wind energy production. The findings underline that the pursuit of carbon neutrality can yield co-benefits of not only mitigating climate change and air pollution but also fortifying the stability of renewable energy sources.

Meltwater Orientations Modify Seismic Anisotropy in Temperate Ice

Fri, 07/05/2024 - 05:50
Abstract

Seismology is increasingly used to infer the magnitude and direction of glacial ice flow. However, the effects of interstitial meltwater on seismic properties remain poorly constrained. Here, we extend previous studies on seismic anisotropy in temperate ices to consider the role of melt preferred orientation (MPO). We used the ELLE numerical toolbox to simulate microstructural shear deformation of temperate ice with variable MPO strength and orientation, and calculated the effective seismic properties of these numerical ice-melt aggregates. Our models demonstrate that even 3.5% melt volume is sufficient to rotate fast directions by up to 90°, to increase Vp anisotropy by up to +110%, and to modify Vs anisotropy by −9 to +36%. These effects are especially prominent at strain rates ≥3.17 × 10−12 s−1. MPO may thus obscure the geophysical signatures of temperate ice flow in regions of rapid ice discharge, and is therefore pivotal for understanding ice mass loss.

Is El Niño‐Southern Oscillation a Tipping Element in the Climate System?

Fri, 07/05/2024 - 05:45
Abstract

Observed El Niño-Southern Oscillation (ENSO) varies between decades with high ENSO amplitude and more extreme Eastern Pacific (EP) El Niño events and decades with low ENSO amplitude and mainly weak El Niño events. Based on experiments with the CESM1 model, ENSO may lock-in into an extreme EP El Niño-dominated state in a +3.7 K warmer climate, while in a −4.0 K cooler climate ENSO may lock-in into a weak El Niño-dominated state. The state shift of ENSO with global warming can be explained by the location and amplitude of the strongest warming over the eastern equatorial Pacific, which amplifies the Bjerknes feedback and allows a southward migration of the Intertropical Convergence Zone onto the equator, a prerequisite of extreme EP El Niños. In light of these results, we discuss to what extent the state of ENSO may be a tipping element in the climate system.

Meridional Shifts of the Southern Hemisphere Westerlies During the Early Cenozoic

Fri, 07/05/2024 - 05:45
Abstract

Despite the crucial role of the Southern Hemisphere (SH) westerlies in modulating modern and past climate evolution, little is known about their behavior and possible forcing mechanisms during the early Cenozoic. We probe changes in the hydroclimate of southwest Australia during 62–51 Ma, based on sedimentary proxy records from the International Ocean Discovery Program Site U1514 in the Mentelle Basin. Our results reveal a transition from a less humid climate to wetter conditions at mid–high latitudes starting from the early Eocene, which suggests poleward migration of the SH westerlies. This long-term trend is punctuated by short-lived events of aridification during the Mid-Paleocene Biotic Event and wetter intervals during the Paleocene-Eocene Thermal Maximum, indicating additional short-term meridional shifting of the westerlies. We propose that the evolution of SH westerlies was driven by the equator-to-pole temperature gradient regulated by global warming and ephemeral growth of the Antarctic ice sheet.

The Role of Continental Alkaline Magmatism in Mantle Carbon Outflux Constrained by a Machine Learning Analysis of Zircon

Fri, 07/05/2024 - 05:39
Abstract

Continental alkaline magmatism has been suggested to play a significant role in releasing deep mantle carbon into the atmosphere, which can greatly impact the global climate. However, the temporal variations of alkaline magmatism and their potential to modulate climate over geologic time remain poorly constrained. The detrital zircon record is a frequently used proxy for tracking secular variations in particular magmatism. Here, we use a novel machine-learning technique to discriminate zircon from carbonatites, kimberlites, and other alkaline rocks. A global compilation of detrital zircon yields continental alkaline magmatic flare-ups between 1,050−850, 650−500, 250−200, and 50−0 Ma. Our estimates indicate relatively elevated contributions of total magmatic carbon outgassing from alkaline magmatism during the aforementioned magmatic flare-ups. We infer that anomalous alkaline magmatism may influence global warming during specific intervals of geologic time, but when they are not that voluminous or persistent extensive arc magmatism may drive warming conditions.

Dynamic and Thermodynamic Control of the Response of Winter Climate and Extreme Weather to Projected Arctic Sea‐Ice Loss

Fri, 07/05/2024 - 05:29
Abstract

A novel sub-sampling method has been used to isolate the dynamic effects of the response of the North Atlantic Oscillation (NAO) and the Siberian High (SH) from the total response to projected Arctic sea-ice loss under 2°C global warming above preindustrial levels in very large initial-condition ensemble climate simulations. Thermodynamic effects of Arctic warming are more prominent in Europe while dynamic effects are more prominent in Asia/East Asia. This explains less-severe cold extremes in Europe but more-severe cold extremes in Asia/East Asia. For Northern Eurasia, dynamic effects overwhelm the effect of increased moisture from a warming Arctic, leading to an overall decrease in precipitation. We show that the response scales linearly with the dynamic response. However, caution is needed when interpreting inter-model differences in the response because of internal variability, which can largely explain the inter-model spread in the NAO and SH response in the Polar Amplification Model Intercomparison Project.

Climate‐Driven Topographic Asymmetry Enhanced by Glaciers: Implications for Drainage Reorganization in Glacial Landscapes

Fri, 07/05/2024 - 05:25
Abstract

Climate contrasts across drainage divides, such as orographic precipitation, are ubiquitous in mountain ranges, and as a result, mountain topography is often asymmetric. During glacial periods, these climate gradients can generate asymmetric glaciation, which may modify topographic asymmetry and drive divide migration during glacial-interglacial cycles. Here we quantify topographic asymmetry caused by asymmetric glaciation and its sensitivity to different climate scenarios. Using an analytical model of a steady-state glacial profile, we find that the degree of topographic asymmetry is primarily controlled by differences in the equilibrium line altitude across the divide. Our results show that glacial erosion can respond to the same climate asymmetry differently than fluvial erosion. When there are precipitation differences across the divide, glacial erosion produces greater topographic asymmetry than fluvial erosion, all else equal. These findings suggest that glaciations may promote drainage reorganization and landscape transience in intermittently glaciated mountain ranges.

Exploring the Behaviors of Initiated Progressive Failure and Slow‐Moving Landslides in Los Angeles Using Satellite InSAR and Pixel Offset Tracking

Fri, 07/05/2024 - 05:11
Abstract

Catastrophic landslides are often preceded by slow, progressive, accelerating deformation that differs from the persistent motion of slow-moving landslides. Here, we investigate the motion of a landslide that damaged 12 homes in Rolling Hills Estates (RHE), Los Angeles, California on 8 July 2023, using satellite-based synthetic aperture radar interferometry (InSAR) and pixel tracking of satellite-based optical images. To better understand the precursory motion of the RHE landslide, we compared its behavior with local precipitation and with several slow-moving landslides nearby. Unlike the slow-moving landslides, we found that RHE was a first-time progressive failure that failed after one of the wettest years on record. We then applied a progressive failure model to interpret the failure mechanisms and further predict the failure time from the pre-failure movement of RHE. Our work highlights the importance of monitoring incipient slow motion of landslides, particularly where no discernible historical displacement has been observed.

Electron Beams at Europa

Fri, 07/05/2024 - 05:05
Abstract

Jupiter's moon Europa contains a subsurface ocean whose presence is inferred from magnetic field measurements, the interpretation of which depends on knowledge of Europa's local plasma environment. A recent Juno spacecraft flyby returned new observations of plasma electrons with unprecedented resolution. Specifically, powerful magnetic field-aligned electron beams were discovered near Europa. These beams, with energies from ∼30 to ∼300 eV, locally enhance electron-impact-excited emissions and ionization in Europa's atmosphere by more than a factor three over the local space environment, and are associated with large jumps of the magnetic fields. The beams therefore play an essential role in shaping Europa's plasma and magnetic field environment and thus need to be accounted for electromagnetic sounding of Europa's ocean and plume detection by future missions such as JUICE and Europa Clipper.

Cool Roofs Could Be Most Effective at Reducing Outdoor Urban Temperatures in London (United Kingdom) Compared With Other Roof Top and Vegetation Interventions: A Mesoscale Urban Climate Modeling Study

Thu, 07/04/2024 - 13:00
Abstract

Comprehensive studies comparing impacts of building and street levels interventions on air temperature at metropolitan scales are still lacking despite increased urban heat-related mortality and morbidity. We therefore model the impact of 9 interventions on air temperatures at 2 m during 2 hot days from the summer 2018 in the Greater London Authority area using the WRF BEP-BEM climate model. We find that on average cool roofs most effectively reduce temperatures (∼−1.2°C), outperforming green roofs (∼0°C), solar panels (∼−0.5°C) and street level vegetation (∼−0.3°C). Application of air conditioning across London (United Kingdom) increases air temperatures by ∼+0.15°C. A practicable deployment of solar panels could cover its related energetic consumption. Current practicable deployments of green roofs and solar panels are ineffective at large scale reduction of temperatures. We provide a detailed decomposition of the surface energy balance to explain changes in air temperature and guide future decision-making.

Gulf Stream Moisture Fluxes Impact Atmospheric Blocks Throughout the Northern Hemisphere

Thu, 07/04/2024 - 11:41
Abstract

In this study, we explore the impact of oceanic moisture fluxes on atmospheric blocks using the ECMWF IFS. Artificially suppressing surface latent heat flux over the Gulf Stream (GS) region reduces atmospheric blocking frequency across the Northern Hemisphere by up to 30%. Affected blocks show a shorter lifespan (−6%), smaller spatial extent (−10%), and reduced intensity (−0.4%), with an increased number of individual blocking anticyclones (+17%). These findings are robust across various blocking detection thresholds. Analysis reveals a qualitatively consistent response across all resolutions, with Tco639 (∼18 km) showing the largest statistically significant change across all blocking characteristics, although differences between resolutions are not statistically significant. Exploring the broader Rossby wave pattern, we observe that diminished moisture fluxes favor eastward propagation and higher zonal wavenumbers, while air-sea interactions promote stationary and westward-propagating waves with zonal wavenumber 3. This study underscores the critical role of the GS in modulating atmospheric blocking.

Provenance and Fluvial‐Aeolian Process of Kyzylkum Desert: Constrained by Detrital Zircon U–Pb Dating

Thu, 07/04/2024 - 11:04
Abstract

The Kyzylkum Desert, as a transition area of different dust source in Central Asia, provides and reserves a large amount of dust transported by different atmospheric circulation systems, affecting Uzbekistan and downwind East Asia. However, there remains very few investigations about sediment sources and control factors of the desert. We hereby first present a provenance study on the Kyzylkum Desert, utilizing detrital zircon U-Pb ages of samples composed of desert sand, alluvial sediments from Amu Darya River and piedmont of Southwest Tianshan Mountains. The results reveal that the Southwest Tianshan Mountains contribute the majority of the Kyzylkum desert sand, and the river system, dominated by Syr Darya, controls the sediment provenance of the desert. Moreover, little contribution from the Kyzylkum and Nurata segments indicates that wind erosion on the bedrocks is weak. However, the aeolian process is still crucial but deposit and storage of dust are determined by local topography.

Original Insights Into Rock Slope Damage Processes Until Collapse From Passive Seismic Monitoring

Thu, 07/04/2024 - 10:40
Abstract

We performed a passive seismic monitoring of the La Praz ∼14,000 m3 unstable slope (French Alps) spanning over 10 years. During the last 6 months prior to collapse, we detected a clear 24% decrease in the slope's fundamental resonance frequency, f 0, caused by a reduction in overall rock mass stiffness. The combined study of f 0 and slope deformation suggested the alternating importance of sudden brittle failure processes versus more ductile phases with possible sliding. Seismic monitoring revealed slope damage that remained ambiguous or undetected with ground surface deformation monitoring, and highlighted critical periods with intense damage. Only some of these critical damage periods could be related to clear external forcing factors such as intense rainfall episodes. These new insights into rock slope's structural condition at depth represent an asset for future monitoring systems. Surface deformation and passive seismic stiffness tracking combined could reveal active slopes with ongoing damage processes.

Geologic and Tectonic Controls on Deep Fracturing, Weathering, and Water Flow in the Central California Coast Range

Thu, 07/04/2024 - 10:34
Abstract

The creation of fractures in bedrock dictates water movement through the critical zone, controlling weathering, vadose zone water storage, and groundwater recharge. However, quantifying connections between fracturing, water flow, and chemical weathering remains challenging because of limited access to the deep critical zone. Here we overcome this challenge by coupling measurements from borehole drilling, groundwater monitoring, and seismic refraction surveys in the central California Coast Range. Our results show that the subsurface is highly fractured, which may be driven by the regional geologic and tectonic setting. The pervasively fractured rock facilitates infiltration of meteoric water down to a water table that aligns with oxidation in exhumed rock cores and is coincident with the adjacent intermittent first-order stream channel. This work highlights the need to incorporate deep water flow and weathering due to pervasive fracturing into models of catchment water balances and critical zone weathering, especially in tectonically active landscapes.

Non‐Tidal Ocean Loading Signals of the North and Baltic Sea From Terrestrial Gravimetry, GNSS, and High‐Resolution Modeling

Thu, 07/04/2024 - 10:19
Abstract

Non-tidal ocean loading (NTOL) signals are known to be a significant source of geophysically induced noise in gravimetric and geodetic observations also far-away from the coast and especially during extreme events such as storm surges. Operationally available corrections suffer from a low temporal and spatial resolution and reveal too small amplitudes on continental stations. Dedicated high-resolution sea-level modeling of the North and Baltic Sea provides an improved prediction of NTOL signals. Superconducting gravimeter and Global Navigation Satellite Systems observations on the small offshore island of Heligoland in the North Sea are used for an evaluation of the model values revealing largely increased correlations of up to 0.9 and signal reductions of up to 50% during a storm surge period of one month in January and February 2022. Evaluations on additional continental superconducting gravimeter stations also show significant improvements through the recommended high-resolution modeling for improved signal separation further away from the coast.

Modulation of the Pacific Meridional Mode on the Dipole Pattern of the CONUS Summertime Precipitation

Thu, 07/04/2024 - 10:13
Abstract

Historically, the precipitation trend over the past few decades in the Contiguous United States (CONUS) exhibits a “Dry-West Wet-East” pattern; this is manifested by recent droughts/floods in the western/eastern US. However, it remains elusive what atmospheric phenomenon has potentially driven such a remarkable, and impactful precipitation pattern. Here we found that a coupled climate mode—the Pacific Meridional Mode (PMM) exerted strong impacts on the precipitation pattern over the CONUS during the summer season. We discovered a significant association between the PMM index and precipitation across the majority of the CONUS; this was manifested as a zonal dipole pattern—negative correlations in the western U.S. along with positive correlations in the eastern and central U.S. Overall, the physical mechanisms based on observations were supported by using Atmospheric Model Intercomparison Project simulations available from the Coupled Model Intercomparison Project Phase 6.

Cyclone‐Like Features Within the Stratospheric Polar‐Night Vortex

Thu, 07/04/2024 - 10:10
Abstract

Distinctive synoptic-scale (∼1,500 km) flow features are identified within the core of the stratospheric polar-night vortex at stratopause altitudes (∼50 km). Typically they comprise a train or a complex pattern of transient vortices, each characterized by enhanced values of potential vorticity (PV) and relative vorticity but with a weaker thermal signal. In the MERRA-2 (and two other) reanalysis fields these cyclone-like features persist for several days, occur episodically, and form essentially within the core of the polar-night vortex itself. Their origin is plausibly linked to a form of barotropic instability associated with a radiatively-induced annular ring of enhanced PV. Moreover, their ubiquity and dynamics carries possible implications for: - the structure of the larger-scale polar vortex and its preconditioning ahead of a Sudden Stratospheric Warming event; the distribution of trace-constituents within the core; and the features representation in extended range/seasonal prediction and climate models.

A Machine Learning‐Based Approach to Quantify ENSO Sources of Predictability

Thu, 07/04/2024 - 08:29
Abstract

A machine learning method is used to identify sources of long-term ENSO predictability in the ocean (sea surface temperature (SST) and heat content) and the atmosphere (near-surface zonal wind (U10)). Tropical SST represents the primary source of predictability skill. While U10 does not increase the skill when associated with SST, our analysis suggests U10 alone has apredictive skill comparable to that of SST between 11 and 21 months in advance, from late fall up to late spring. The long-lead signal originates from coupled wind-SST interactions across the Indian Ocean (IO) and propagates across the Pacific via an atmospheric bridge mechanism. A linear correlation analysis supports this mechanism, suggesting a precursor link between anomalies in SST in the western and wind in the eastern IO. Our results have important implications for ENSO predictions beyond 1 year ahead and identify the key role of U10 over the IO.

Picky Eaters: Carbon Isotopic Evidence for the Uniform Bioavailability of Riverine Dissolved Organic Matter to a Model Marine Microorganism

Wed, 07/03/2024 - 14:04
Abstract

Dissolved organic matter (DOM) is a key component of the global carbon cycle, with rivers delivering significant amounts of DOM to oceans. Urbanization and agricultural land-use alter the age and chemical composition of riverine DOM, which likely impact the downstream bioavailability of riverine DOM. Here, we use bioreactor incubations of a marine bacterium (Pseudoalteromonas sp. 3D05) to investigate DOM bioavailability from two distinct rivers: the Suwannee River (natural, non-urbanized), and the Upper Mississippi River Basin (anthropogenically influenced). We measured rates of microbial CO2 production and radiocarbon ages (as Δ14C) to assess DOM remineralization. We observed nearly identical cell densities and degradation patterns for both riverine DOM incubations. Respired DOM Δ14C values were also similar and decreased over time indicative of preferential utilization of recently synthesized “modern” substrates. These findings reveal unexpected similarities in riverine DOM bioavailability, indicating similar short term biological reactivity despite large DOM compositional differences.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer