GRL

Syndicate content Wiley: Geophysical Research Letters: Table of Contents
Table of Contents for Geophysical Research Letters. List of articles from both the latest and EarlyView issues.
Updated: 16 weeks 6 hours ago

How Well Does the DOE Global Storm Resolving Model Simulate Clouds and Precipitation Over the Amazon?

Tue, 07/16/2024 - 11:39
Abstract

This study assesses a 40-day 3.25-km global simulation of the Simple Cloud-Resolving E3SM Model (SCREAMv0) using high-resolution ground-based observations from the Atmospheric Radiation Measurement (ARM) Green Ocean Amazon (GoAmazon) field campaign. SCREAMv0 reasonably captures the diurnal timing of boundary layer clouds yet underestimates the boundary layer cloud fraction and mid-level congestus. SCREAMv0 well replicates the precipitation diurnal cycle, however it exhibits biases in the precipitation cluster size distribution compared to scanning radar observations. Specifically, SCREAMv0 overproduces clusters smaller than 128 km, and does not form enough large clusters. Such biases suggest an inhibition of convective upscale growth, preventing isolated deep convective clusters from evolving into larger mesoscale systems. This model bias is partially attributed to the misrepresentation of land-atmosphere coupling. This study highlights the potential use of high-resolution ground-based observations to diagnose convective processes in global storm resolving model simulations, identify key model deficiencies, and guide future process-oriented model sensitivity tests and detailed analyses.

Single‐Hemisphere Oxygen Outflow From Earth's Subauroral Zone

Tue, 07/16/2024 - 07:09
Abstract

Besides the cusp, polar cap, and auroral oval, the nightside subauroral zone has also recently been reported as a source region of the ionospheric oxygen outflows. However, the detailed mass and energy sources of these ions remain open questions. Here, we address this issue from the perspective of the response of conjugate hemispheres. Investigation of Van Allen Probes data demonstrates a notable preference of oxygen outflows from the nightside subauroral zone from the sunlit hemisphere. This characteristic eliminates the possibility of nightside auroral precipitation playing a significant role, as it is more prominent in darkness. Instead, it highlights sunlight-induced ionization as the mass source and enhanced plasma waves from the magnetotail as the energy source. The results presented here further support the nightside subauroral zone as an independent source of magnetospheric oxygen ions.

Asymmetric and Irreversible Response of Tropical Cyclone Potential Intensity to CO2 Removal

Tue, 07/16/2024 - 07:05
Abstract

Understanding the behaviors of tropical cyclone (TC) intensity under the CO2 removal scenario is important for future climate adaptation and policy making. Based on the idealized CO2 ramp-up (from 284.7 to 1,138.8 ppm) and symmetric ramp-down experiments, our results suggest an asymmetric and irreversible response of TC potential intensity to CO2 reduction. Potential intensity shows an additional enhancement at the same CO2 level during the CO2 ramp-down relative to the ramp-up periods (though with regional differences), and does not completely return to the initial value even when CO2 recovers on multi-decadal to centennial timescale. The enhanced potential intensity is dominated by the increased thermodynamic disequilibrium, which is mainly attributed to the weakened surface winds arising from the El Niño-like warming pattern and inter-hemispheric ocean temperature contrast. Our results highlight the potential risks of stronger storms on the socioeconomic development under the negative carbon emissions pathways.

The Influence of Extratropical Ocean on the PNA Teleconnection: Role of Atmosphere‐Ocean Coupling

Tue, 07/16/2024 - 06:53
Abstract

The Pacific/North American (PNA) pattern is a major low-frequency variability in boreal winter. A recent modeling study suggested that PNA variability increases through extratropical atmosphere-ocean coupling, but the effect was not fully extracted due to a particular experimental design. By comparing coupled and two sets of uncoupled large-ensemble global model simulations, here we show that the PNA-induced horseshoe-shaped sea-surface temperature (SST) anomaly in the North Pacific returns a non-negligible influence on the PNA itself. Its magnitude depends on the presence or absence of atmosphere-ocean coupling. The coupling accounts for ∼16% of the PNA variance, while the horseshoe-shaped SST anomaly explains only 5% under the uncoupled condition. The coupling reduces the damping of available potential energy by modulating turbulent heat fluxes and precipitation, magnifying the PNA variance. Precipitation processes in the extratropics as well as tropics are therefore important for realistically representing PNA variability and thereby regional weather and climate.

Cloud Radiative Feedback to the Large‐Scale Atmospheric Circulation Greatly Reduces Monsoon‐Season Wet Bias Over the Tibetan Plateau in Climate Modeling

Mon, 07/15/2024 - 15:49
Abstract

Over-estimation of summer precipitation over the Tibetan Plateau (TP) is a well-known and persistent problem in most climate models. This study demonstrates the impact of a Gaussian Probability Density Function cloud fraction scheme on rainfall simulations using the Weather Research and Forecasting model. It is found that this scheme in both 0.1° and 0.05° resolutions significantly reduces the wet bias through both local feedbacks and large-scale dynamic process. Specifically, increased cloud water/ice content with this scheme reduces surface shortwave radiation, and consequently surface heat fluxes and evapotranspiration. This, in turn, dampens the large-scale thermal effect of the TP and weakens the exaggerated monsoon circulation and low-level moisture convergence. It is this large-scale dynamic process that contributes the most (∼70%) to the wet bias reduction. Although this paper presents a modeling study, it highlights the cloud radiative feedback to the large-scale dynamics and precipitation over the TP.

Observing and Modeling Short‐Term Changes in Basal Friction During Rain‐Induced Speed‐Ups on an Alpine Glacier

Mon, 07/15/2024 - 04:39
Abstract

Basal shear stress on hard-bedded glaciers results from normal stress against bed roughness, which depends on basal water pressure and cavity size. These quantities are related in a steady state but are expected to behave differently under rapid changes in water input, which may lead to a transient frictional response not captured by existing friction laws. Here, we investigate transient friction using Global Positioning System vertical displacement and horizontal velocity observations, basal water pressure measurements, and cavitation model predictions during rain-induced speed-up events at Glacier d'Argentière, French Alps. We observe up to a threefold increase in horizontal surface velocity, spatially migrating at rates consistent with subglacial flow drainage, and associated with surface uplift and increased water pressure. We show that frictional changes are mainly driven by changes in water pressure at nearly constant cavity size. We propose a generalized friction law capable of capturing observations in both the transient and steady-state regimes.

A Rare Simultaneous Detection of a Mid‐Latitude Plasma Depleted Structure in O(1D) 630.0 and O(1S) 557.7 nm All‐Sky Airglow Images on a Geomagnetically Quiet Night

Mon, 07/15/2024 - 04:39
Abstract

This letter reports first simultaneous detection of F-region plasma-depleted structure in O(1D) 630.0 and O(1S) 557.7 nm airglow images on a geomagnetically quiet-night (Ap = 3) of 26 June 2021 from mid-latitude station (Hanle, India) due to enhanced thermospheric 557.7 nm emission. Since nighttime thermospheric 557.7 nm emission over mid-latitudes is predominantly masked by significantly larger mesospheric component, F-region plasma structures are rarely observed in 557.7 nm images. Interestingly, thermospheric 557.7 nm emission was not significant on the following geomagnetically quiet-night as bands of medium-scale traveling ionospheric disturbance were only observed in 630.0 nm images. Poleward wind generated by Equatorial Temperature and Wind Anomaly transported plasma from the boundary of equatorial ionization anomaly, causing significant electron density enhancement around 250 km and descent of F-layer peak over Hanle on 26 June 2021. This amplified the dissociative recombination enabling the simultaneous detection of plasma-depleted structure in 557.7 and 630.0 nm images.

Comparisons of Greenhouse Gas Observation Satellite Performances Over Seoul Using a Portable Ground‐Based Spectrometer

Sun, 07/14/2024 - 14:38
Abstract

Satellites provide global coverage for monitoring atmospheric greenhouse gases, crucial for understanding global climate dynamics. However, their temporal and spatial resolutions fall short in detecting urban-scale variations. To enhance satellite reliability over urban areas, this study presents the first comprehensive analysis of long-term observations of column-averaged dry air mole fractions of CO2, CH4, and CO (XCO2, XCH4, XCO) using two ground-based fourier transform infrared spectrometers, EM27/SUNs, in a megacity. With over 2 years of observations, our study shows that EM27/SUN measurements can effectively capture the daily and seasonal variability of XCO2, XCH4, and XCO over Seoul, a megacity with complex topography and various emission sources. In addition, we use the advantage of having multiple greenhouse gas satellites targeting Seoul to compare with the EM27/SUNs. Our study highlights the importance of EM27/SUN observations in Seoul to identify the need for improvements in satellites to monitor greenhouse gas behaviors and emissions in urban areas.

Deep Multimodal Learning for Seismoacoustic Fusion to Improve Earthquake‐Explosion Discrimination Within the Korean Peninsula

Sun, 07/14/2024 - 14:26
Abstract

Recent geophysical studies have highlighted the potential utility of integrating both seismic and infrasound data to improve source characterization and event discrimination efforts. However, the influence of each of these data types within an integrated framework is not yet well-understood by the geophysical community. To help elucidate the role of each data type within a merged structure, we develop a neural network which fuses seismic and infrasound array data via a gated multimodal unit for earthquake-explosion discrimination within the Korean Peninsula. Model performance is compared before and after adding the infrasound branch. We find that the seismoacoustic model outperforms the seismic model, with the majority of the improvements stemming from the explosions class. The influence of infrasound is quantified by analyzing gated multimodal activations. Results indicate that the model relies comparatively more on the infrasound branch to correct seismic predictions.

How P‐Wave Scattering Throughout the Entire Mantle Mimics the High‐Frequency Pdiff and Its Coda

Sun, 07/14/2024 - 14:26
Abstract

We document the arrival of seismic energy in the core shadow zone up to large distances beyond 150° more than 100 s prior to the core phases. Numerical simulations of the energy transport in an established heterogeneity model show that scattering throughout the entire mantle explains these observations. Diffraction at the core-mantle boundary is unlikely in our 1–2 Hz frequency band and is not required indicating misleading terminology with reference to P diff for the scattered PP-energy. Records of the largest deep earthquakes at low-noise stations are key to the observation of the faint precursory signal which changes appearance with increasing distance from a coda-like decay over a constant amplitude level around 130° to an emergent wave train. According to our simulations, different depth layers in the mantle dominate different time-distance windows of the scattered wave train, providing the opportunity to improve the depth resolution of mantle heterogeneity models.

The Key Role of Magnetic Curvature Scattering in Energetic Electron Precipitation During Substorms

Sat, 07/13/2024 - 03:36
Abstract

Energetic electron precipitation (EEP) during substorms significantly affects ionospheric chemistry and lower-ionosphere (<100 km) conductance. Two mechanisms have been proposed to explain what causes EEP: whistler-mode wave scattering, which dominates at low latitudes (mapping to the inner magnetosphere), and magnetic field-line curvature scattering, which dominates poleward. In this case study, we analyzed a substorm event demonstrating the dominance of curvature scattering. Using ELFIN, POES, and THEMIS observations, we show that 50–1,000 keV EEP was driven by curvature scattering, initiated by an intensification and subsequent earthward motion of the magnetotail current sheet. Using a combination of Swarm, total electron content, and ELFIN measurements, we directly show the location of EEP with energies up to ∼1 MeV, which extended from the plasmapause to the near-Earth plasma sheet (PS). The impact of this strong substorm EEP on ionospheric ionization is also estimated and compared with precipitation of PS (<30 keV) electrons.

Heatwave Location Changes in Relation to Rossby Wave Phase Speed

Sat, 07/13/2024 - 02:23
Abstract

Surface anticyclones connected to the ridge of an upper-tropospheric Rossby wave are the main dynamical drivers of mid-latitude summer heatwaves. It is, however, unclear to what extent an anomalously low zonal phase speed of the wave in the upper troposphere is necessary for persistent temperature extremes at the surface. Here, we use spectral decomposition to separate fast and slow synoptic-scale waves. A composite analysis of ERA5 reanalysis data reveals that, while in some regions heatwaves become more frequent during episodes of weak or no phase propagation, temperature extremes in other regions are commonly associated with more rapidly eastward propagating Rossby waves. Reflected in the mean heatwave duration as well, this relationship is possibly linked to a longitudinal phase preference of slow and fast waves or a meridional storm track shift. These findings open up new questions about the influence of mid-latitude dynamics on temperature extremes.

Why Do DJF 2023/24 Upper‐Level 200‐hPa Geopotential Height Forecasts Look Different From the Expected El Niño Response?

Fri, 07/12/2024 - 13:43
Abstract

We investigate why the North American Multi-Model Ensemble (NMME) upper-level height forecast for December–February (DJF) 2023/24 differs from the expected El Niño response. These atypical height anomalies emerged despite the fact a strong El Niño was forecast. The analysis focuses on diagnosing the NMME forecasts of DJF 2023/24 for SSTs and 200-hPa heights initialized at the beginning of November 2023 relative to other ensemble mean NMME DJF forecasts dating back to 1982. The results demonstrate that forecasts of the 200-hPa height anomalies had a large contribution from warming trends in global SSTs. It is the combination of trends and the expected El Niño teleconnection that results in the forecast height anomalies. Increasingly, for forecasts of geopotential height anomalies during the recent El Niño winters, the amplitude of trends is nearly equal to the signal from El Niño and has implications for the climatological base period selection for seasonal forecasts.

Mechanically Consistent Model of the 2018 Christmas Volcano‐Tectonic Event at Etna

Fri, 07/12/2024 - 13:29
Abstract

The interaction between volcanic activity and flank instability during the Christmas Eve eruption at Mount Etna in 2018 is explored, using a mechanically consistent inverse model fitting high spatial resolution SAR data. Inversions search for fractures that may be curved and can accommodate co-eval pressure and shear stress changes. Displacements associated with the eruption result from the interaction between two intrusion sources: a buried dyke and a curved sheared intrusion that fed the eruption. Moreover, we identify that the sheared magmatic intrusion induced the observed eastward slip on the Pernicana fault, while the Fiandaca fault was undergoing stress accumulation, which was suddenly released during a M5.0 seismic event. The Fiandaca fault is determined to be listric, rooting beneath the mobile eastern flank of the volcano. This study highlights the role of curved fractures, acting as sheared intrusions or as faults, in volcanoes exhibiting flank instabilities.

On the Move: 2023 Observations on Real Time Graben Formation, Grindavík, Iceland

Fri, 07/12/2024 - 12:39
Abstract

Grabens, or valleys formed during extensional tectonic events, are common but rarely observed during formation. In November 2023, inelastic surface deformation formed abruptly along Iceland's plate boundary in Grindavík. We documented graben formation in real-time through satellite mapping (InSAR), seismicity, GNSS data, repeated lidar surveys, and field mapping. Five normal faults and ∼12 fissures ruptured the surface delineating two grabens separated by a horst, a context not present in other contemporary case studies. The graben normal faults slipped rapidly (over hours) and maximum surface motions coincided with the occurrence of turbulent seismic swarms in both space and time. Although 3 eruptions took place ∼15 km northeast of Grindavík from 2021 to 2023, attributed to magma intrusions (i.e., dikes), none of these also formed grabens. Thus, the Grindavík grabens shows evidence for tectonic origins. Real-time monitoring of these phenomena provide insight into graben formation on Earth and potentially on other planets.

Limited Benefits of Increased Spatial Resolution for Sea Ice in HighResMIP Simulations

Fri, 07/12/2024 - 12:15
Abstract

State-of-the-art coupled climate models struggle to accurately simulate historical variability and trends of Antarctic sea ice, impacting their reliability for future projections. Increasing horizontal resolution is expected to improve the representation of coupled atmosphere-ice-ocean processes at high latitudes. Here, we examine the historical changes in the Antarctic sea ice area and volume in High Resolution Model Intercomparison Project simulations against satellite data sets and ocean reanalyzes to assess the benefits of increased spatial resolution. Our results do not show considerable benefits when horizontal resolutions up to 0.25° in the ocean and 25 km in the atmosphere. Limited improvements are reported in the simulated historical sea ice trends, which are nevertheless model-dependent, and associated with the use of model components with more complex sea-ice parameterizations. Given the high computational cost of climate-scale simulations at high spatial resolution, we advocate prioritizing enhancements in sea-ice physics and the interactions among model components in coupled climate simulations.

Influence of ENSO and Volcanic Eruptions on Himalayan Jet Latitude

Fri, 07/12/2024 - 07:00
Abstract

The position of the subtropical jet over the Himalayas (Himalayan jet) affects extreme precipitation and heat over Central and South Asia. We examine the influence of two major natural factors-the El Niño/Southern Oscillation (ENSO) and explosive volcanic eruptions—on Himalayan jet interannual variability during the past millennium using simulations from the Community Earth System Model. We find that both El Niño events and eruptions shift the Himalayan jet equatorward by up to 3°. If an El Niño occurs following an eruption, this enhances the equatorward Himalayan jet shift, while La Niña tends to favor poleward jet migration. Subtropical cooling during El Niño or following eruptions is the primary cause of equatorward Himalayan jet shifts, while poleward shifts are associated with subtropical warming. Consistent across the CMIP6 models over the historical period, our results suggest that both ENSO and eruptions are the key drivers of interannual Himalayan jet variability.

Improved Temperature‐Dependent Ice Refractive Index Compilation in the Far‐Infrared Spectrum

Fri, 07/12/2024 - 07:00
Abstract

A new ice refractive index compilation is reported for a broad spectrum ranging from 0.0443 to 106 μm, focusing on the pronounced temperature-dependence of ice optical properties in the far-infrared (far-IR) segment (15–100 μm). A sensitivity study assuming spherical particles shows that selecting ice refractive indices at 12 temperatures and 215 wavelengths in the far-IR region gives sufficient accuracy in interpolated refractive indices for developing a new ice crystal optical property database. Furthermore, we demonstrate the differences between the bulk single-scattering properties computed for hexagonal ice particles with this new compilation compared to a previous iteration at three far-IR wavelengths where substantial differences are noticed between the two ice refractive index compilations. We suggest that our new ice refractive index data set will improve downstream light-scattering applications for upcoming far-IR satellite missions and allow robust modeling of outgoing longwave radiation under ice cloud conditions.

Nutrient Replenishment by Turbulent Mixing in Suspended Macroalgal Farms

Fri, 07/12/2024 - 07:00
Abstract

This study uses large eddy simulations to investigate nutrient transport and uptake in suspended macroalgal farms. Various farm configurations and oceanic forcing conditions are examined, with the farm base located near the nutricline depth. We introduce the Damkohler number Da to quantify the balance between nutrient consumption by macroalgae uptake and supply by farm-enhanced nutrient transport. Most cases exhibit low Da, indicating that farm-generated turbulence drives sufficient upward nutrient fluxes, supporting macroalgae growth. High Da and starvation may occur in fully grown farm blocks, a configuration that generates the weakest turbulence, particularly when combined with densely planted macroalgae or weak flow conditions. Flow stagnation within the farm due to macroalgae drag may constrain the uptake efficiency and further increase the starvation risk. Mitigation strategies involve timely harvesting, avoiding dense macroalgae canopies, and selecting farm locations with robust ocean currents and waves. This study provides insights for sustainable macroalgal farm planning.

Cloud Height Distributions and the Role of Vertical Mixing in the Tropical Cyclone Eye Derived From Compact Raman Lidar Observations

Fri, 07/12/2024 - 07:00
Abstract

The distribution of tropical cyclone (TC) eye cloud heights is documented for the first time using compact Raman lidar (CRL) measurements with high spatial resolution. These cloud heights act as tracers for low-level vertical mixing in the eye region. Cloud height distributions using all available data from nine Atlantic TCs in 2021 and 2022 show significant vertical variance, dispelling the notion of a flat stratiform eye cloud deck. Eye cloud widths are multiscale, with shallow convective clouds dominating CRL returns. Data from Hurricane Sam (2021) highlight the evolution of shallow convective clouds in the TC eye and their associated temperature inversions. The frequent appearance of convective eye clouds, along with observed vertical wind fluctuations, suggests that vertical mixing from the boundary layer frequently occurs in the TC eye, even beneath strong inversions. This strong vertical mixing should be accurately portrayed by TC simulations and forecasts.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer