Feed aggregator

How organic matter traps water in soil—even in the driest conditions

Phys.org: Earth science - Mon, 08/11/2025 - 16:35
From lifelong farmers to backyard gardeners, most plant-lovers know that adding organic matter to a field, vegetable plot or flowerpot increases the soil's moisture. Now, for the first time, Northwestern University scientists have uncovered the molecular mechanisms that enable organic matter to boost soil's ability to retain water—even in desert-like conditions. The study is published in the journal PNAS Nexus.

Ocean anomalies traveling north crucial for the Atlantic Meridional Overturning Circulation

Phys.org: Earth science - Mon, 08/11/2025 - 15:39
Anomalies in temperature and salinity that originate in the midlatitude North Atlantic can affect the Atlantic Meridional Overturning Circulation (AMOC) in the Nordic Seas up to a decade later. A new study published in Communications Earth & Environment shows that the anomalies that travel northward with the Atlantic Water are an important part of the system, and actively modulate both the inflow of warm water into the Nordic Seas and the overflow of dense water back into the deep Atlantic.

Lakes may be carbon sinks, not sources, thanks to overlooked shorelines

Phys.org: Earth science - Mon, 08/11/2025 - 15:29
Lakes have long been viewed as sources of carbon dioxide emissions, but new research suggests they may actually act as carbon sinks. A study led by Uppsala University reveals that lake shorelines store more carbon than previously believed, highlighting the need to include these littoral zones in calculations of the continental carbon balance.

Expert explains rare earth elements—and why the Department of Defense is investing in them

Phys.org: Earth science - Mon, 08/11/2025 - 14:29
Rare earth elements thread invisibly through daily life, quietly powering everything from laptops to smartphones to cars. "They're essential ingredients for our modern lives," said Virginia Tech mining expert Aaron Noble.

Are African countries aware of their own mineral wealth? Ghana and Rwanda offer two very different answers

Phys.org: Earth science - Mon, 08/11/2025 - 14:23
Imagine running a business for over a century without knowing what's in your warehouse. That's essentially what many African countries are doing with their mineral wealth. Governments across the continent still have very little knowledge of what lies beneath their soil.

First Complete Picture of Nighttime Clouds on Mars

EOS - Mon, 08/11/2025 - 13:04
Source: Journal of Geophysical Research: Planets

Despite being thinner and drier than Earth’s atmosphere, Mars’s atmosphere contains clouds composed of tiny water ice crystals. And just as on Earth, these clouds influence the planet’s climate. However, most of what we know about clouds on Mars comes from data collected during the Martian afternoon, so there is still much to learn about how clouds tend to form and dissipate over a full day.

Using data from the Emirates Mars Mission Hope probe, which has orbited Mars since 2021, Atwood et al. have captured the first comprehensive view of nighttime clouds on Mars.

Hope’s high-altitude, low-inclination elliptical orbit was specifically designed to enable observation across all times of day and night and at almost all latitudes and longitudes. The researchers analyzed data collected over nearly two Martian years by the Emirates Mars Infrared Spectrometer, an instrument mounted on Hope that can detect the presence and thickness of clouds, according to how they absorb and scatter infrared light.

The analysis revealed that for much of the Martian year, nighttime clouds are, on average, thicker than daytime clouds. Peaks in cloudiness typically occurred in the early morning and the evening, separated by a midday minimum.

During the cold season on Mars, thick clouds tended to form in a band near the equator, becoming thickest just after sunrise. Also during the cold season, late-evening clouds typically formed in a broader distribution across low latitudes, while early-morning clouds mostly concentrated over a vast volcanic region known as Tharsis, which covers the equator and low latitudes.

These findings shed new light on Martian atmospheric dynamics and could help scientists validate computational models of Mars’s atmosphere, the researchers say. (Journal of Geophysical Research: Planets, https://doi.org/10.1029/2025JE008961, 2025)

—Sarah Stanley, Science Writer

Citation: Stanley, S. (2025), First complete picture of nighttime clouds on Mars, Eos, 106, https://doi.org/10.1029/2025EO250279. Published on 11 August 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Tracking the Sinking Ground from Coal Seam Gas Extraction

EOS - Mon, 08/11/2025 - 12:00
Editors’ Highlights are summaries of recent papers by AGU’s journal editors. Source: Water Resources Research

Coal seam gas (CSG) is extracted by pumping out groundwater, which lowers underground pressure, can lead to shrinking of geological layers and make the ground above sink over time.

Cui et al. [2025] present a new way to understand and predict land subsidence caused by CSG extraction. The study introduces a model that links groundwater flow with how the ground moves, including both general sediment compression and the shrinkage of coal as gas is removed. It uses real-world data, such as groundwater levels, gas production, and satellite measurements, to improve the model’s accuracy. By testing this model in the Surat Basin (Queensland, Australia), the authors find that subsidence can reach up to 235 millimeters near some wells and follows a three-stage pattern: growth, stabilization, and partial recovery.

The model helps separate reversible and permanent parts of the subsidence, which is important for long-term planning. This work is especially useful for land managers and farmers concerned about how CSG production may affect agriculture and drainage. More broadly, it provides a practical tool for evaluating the environmental impacts of energy extraction.

Citation: Cui, T., Schoning, G., Gallagher, M., Aghighi, M. A., & Pandey, S. (2025). A coupled hydro-mechanical modeling framework to concurrently simulate coal seam gas induced subsidence and groundwater impacts. Water Resources Research, 61, e2024WR039280.  https://doi.org/10.1029/2024WR039280  

—Gabriel Rau, Associate Editor, Water Resources Research

Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Calls grow for boosting Mono Lake by easing LA's water reliance

Phys.org: Earth science - Mon, 08/11/2025 - 11:02
The picturesque tufa towers on the shores of Mono Lake, formed over centuries by underwater springs and left high and dry as Los Angeles diverted water from nearby creeks, have long been a symbol of the saline lake. Visitors who stroll beside the lapping water take photos of the craggy calcium carbonate formations as flocks of migratory birds soar overhead.

A likely large, tsunamigenic landslide in Tracy Arm inlet, Alaska on 10 August 2025

EOS - Mon, 08/11/2025 - 06:03

Seismic data and eye-witness reports of a displacement wave point to a large landslide at 5:30 am.

On 10 August 2025, at 5:30 am local time, the Alaska Earthquake Center detected a seismic signal that was almost certainly generated by a landslide. They have posted the record of the seismic signal to Twitter. Their posting included a record of the seismic signal, which looks fairly typical for a landslide:-

The seismic signal from Tracy Arm in Alaska, which was probably generated by a large landslide. Data released by the Alaska Earthquake Center.

There are eye witness reports of the resultant localised displacement wave. BNO News quotes a kayaker who was camping in the affected area.

“Kayaker Sasha Calvey said she and two others were camping on Harbour Island in Tracy Arm Inlet, a fjord about 45 miles south of Juneau, when a landslide or iceberg caused a tidal surge that swept away half of their gear, including one boat, personal items, and cooking equipment.

“Calvey said their gear had been stored about 25 feet above the high tide line, but the water reached it and came within an inch of sweeping away their tent. She added that they placed a radio distress call that was picked up by a boat, which transported them to Juneau.”

The mouth of Tracy Arm is at [57.7778, -133.6167]. This is the latest Planet Labs image of at least a part of the area, captured on 7 August 2025 (last Thursday):-

Satellite image of Tracy Arm inlet. Image copyright Planet Labs, used with permission. Image dated 7 August 2025.

This is steep and rugged terrain, but the image provides no obvious hint of the location of the landslide that occurred three days later, as far as I can see. Hopefully, someone will capture a satellite image in the next few days that will shed light on the location, but that will depend upon the weather. Alternatively, the location might be identified from a boat or from an aerial survey.

I will undoubtedly return to this theme in the coming days.

Reference

Planet Team 2024. Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. https://www.planet.com/

Return to The Landslide Blog homepage Text © 2023. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Induced polarization of volcanic rocks. 9. Anatomy of a rising thermal plume

Geophysical Journal International - Mon, 08/11/2025 - 00:00
SummaryThe dynamic Stern layer (DSL) petrophysical model can be used to interpret field induced polarization data and can be applied to both magmatic (volcanic and igneous) rocks and sediments. Thanks to it, field-scale tomograms of conductivity and normalized chargeability can be transformed into tomograms of porosity, Cation Exchange Capacity (CEC), and temperature. Furthermore, kilometer-scale galvanometric induced-polarization surveys are nowadays doable thanks to the recent development of independent stations measuring the primary and secondary electrical fields. This approach reduces capacitive and inductive coupling effects inherent to systems based on long cables and allow for deeper investigations. We apply here this combined methodology (novel equipment and revised petrophysical model) to a geothermal prospect located at Mashyuza, Republic of Rwanda, in Eastern Africa. At this site, the rifting activity led to the occurrence of an extensional regime favoring the occurrence of a rising thermal plume at the intersection between two faults. The existence of this plume is expressed at the ground surface by the presence of a hot spring at a temperature of ∼52°C (a well nearby provides a temperature of ∼65°C). A time-domain large scale induced polarization survey is performed. The current source signal is produced by a VIP-5000 squared signal injector and injection current values range from 1 A to 4 A, with stacking of 1s on-off signals ranging from 100 to 300 stacks to improve the signal-to-noise ratio. The size of the 3D array is ∼1.5 km and allows a tomography down to a depth of ∼300 meters. The data are inverted with the deterministic least-square technique, penalizing the roughness of the resulting tomograms. The conductivity and normalized chargeability tomograms are combined to get the temperature, porosity, and CEC distributions. The temperature distribution is consistent with the temperature of the hot spring and well. The results are interpreted in terms of ground water flow pattern and dilution of the mineralized thermal water with the fresher surface meteoric water. The survey images a rising plume of warm water from a depth of at least 300 m along intersecting fracture systems.

Slip rates and seismic moment deficits on main active faults in Tianshan constrained by GNSS network

Geophysical Journal International - Mon, 08/11/2025 - 00:00
SummaryTianshan Mountains in Central Asia are one of the largest and most active orogenic belts in the world, characterized by complex structures and strong seismic activity. In this paper, we use recently updated GNSS data to self-consistently estimate the slip rates of major faults in Tianshan region via the elastic block model. Our results indicate that crustal deformation in Tianshan region is predominantly manifested as crustal shortening, regulated by foreland thrust belts and intermontane basin boundary faults. The shortening rate decreases from 14.2 ± 3.4 mm/yr in the west to approximately 3 mm/yr in the east. By estimating the seismic moment accumulation rates of the major seismic belts and comparing them with the historical earthquake catalog, we identify six seismic belts with significant seismic moment deficits. This indicates a potential risk for earthquakes exceeding magnitude 7, including the Kash fault, Keping fault, the Maidan fault zone, and the North Tianshan seismic belt. The Nalati seismic belt exhibits a relatively small seismic moment deficit, indicating the potential of earthquakes in the magnitude range of 6 to 7. In contrast, Qiulitage fault, the West Tianshan seismic belt and the Manas fold-and-thrust belt show a moment surplus, suggesting a low likelihood of strong earthquakes occurring in the near future. This study provides critical data and theoretical support for the prediction and risk assessment of seismic activity in Tianshan region.

Scientists thought this Argentine glacier was stable. Now they say it's melting fast

Phys.org: Earth science - Sun, 08/10/2025 - 17:00
An iconic Argentinian glacier, long thought one of the few on Earth to be relatively stable, is now undergoing its "most substantial retreat in the past century," according to new research.

It's challenging to predict extreme thunderstorms—improving this will help reduce their deadly and costly impacts

Phys.org: Earth science - Sat, 08/09/2025 - 17:50
Our ability to predict extreme weather from thunderstorms, like the recent catastrophic flash floods in Texas, is unsettlingly poor, even in the hours leading up to the event. Improvements in understanding, detecting and predicting extreme thunderstorms—and increasing community resilience to them—are badly needed.

Landslide risk doesn't always rise after a wildfire, Columbia River Gorge study finds

Phys.org: Earth science - Fri, 08/08/2025 - 18:00
In the wake of a wildfire, there's often an assumption that burned landscapes will be more susceptible to landslides. But new research from the University of Oregon suggests it's not always that simple.

North Atlantic faces more hurricane clusters as climate warms

Phys.org: Earth science - Fri, 08/08/2025 - 15:36
Tropical cyclones, commonly known as typhoons or hurricanes, can form in clusters and impact coastal regions back-to-back. For example, Hurricanes Harvey, Irma and Maria hit the U.S. sequentially within one month in 2017. The Federal Emergency Management Agency failed to provide adequate support to hurricane victims in Puerto Rico when Maria struck because most rescue resources and specialized disaster staffers were deployed for the responses to Hurricanes Harvey and Irma.

Tsunami detectives at work: Marine geologists discuss the science behind the destructive waves

Phys.org: Earth science - Fri, 08/08/2025 - 15:04
Towering walls of water traveling at the speed of a jetliner, with coastal communities from Japan and Hawaii to South America and the U.S. West Coast in their path.

Un repositorio de núcleos de coral diseñado para la transparencia y accesibilidad

EOS - Fri, 08/08/2025 - 12:02

This is an authorized translation of an Eos article. Esta es una traducción al español autorizada de un artículo de Eos.

Los arrecifes de coral son ecosistemas vitales que sustentan la vida marina, el ecoturismo y la protección costera. Ellos también guardan algo valioso bajo su superficie: registros del pasado del océano. Bajo la capa exterior viva de los corales masivos se encuentran estructuras esqueléticas tipo roca que contienen bandas anuales, similares a los anillos de árboles. Los científicos pueden estudiar las condiciones en el momento en que estas bandas se formaron mediante la perforación, recuperación y análisis de núcleos, algunos de los cuales representan siglos de crecimiento coral.

Daren Coker (izquierda) y Thomas DeCarlo perforan un núcleo de coral en el Mar Rojo. Crédito: Morgan Bennett-Smith

Desde la década de 1970, los estudios de núcleos de coral pueden determinar patrones de crecimiento pasados, un campo conocido como esclerocronología coralina, han producido descubrimientos científicos notables. Knutson et al. [1972] encontraron que las bandas anuales están compuestas por bandas de alta y baja densidad que reflejan patrones de crecimiento estacional. Hudson [1981] descubrió que, por lo general, las bandas de alta densidad se forman durante el crecimiento invernal más lento, mientras que las de baja densidad se forman durante el crecimiento del verano más rápido y que el crecimiento variable a largo plazo de corales están influenciadas por la calidad del agua y los efectos del desarrollo costero. Algunos núcleos también contienen “bandas de estrés” de alta densidad, formadas debido a eventos de blanqueamiento de corales u otros desafíos medioambientales [Lough, 2008]. En conjunto, estas bandas proporcionan información sobre la historia del crecimiento de coral, lo que permite a los científicos construir modelos de edad confiables de las condiciones oceánicas y climáticas pasadas.

Hoy en día, los métodos usados para investigar núcleos de corales han avanzado considerablemente. Junto con otros métodos, como los análisis de isótopos estables y de radio elementales, la tomografía computarizada (CT) desempeña un rol fundamental en la obtención de datos que ayudan a revelar los parámetros de crecimiento coralino. Los científicos pueden escanear rayos X en 2D y escaneo CT 3D para examinar las estructuras internas de núcleos coralinos, incluyendo sus bandas de densidad anual [Knutson et al., 1972; Hudson, 1981; Lough, 2008; DeCarlo et al., 2025]. En algunos casos, este análisis involucra incluso la visita de un científico a un hospital local para usar su equipo de CT – un paciente inesperado para el técnico de radiología.

Esta animación de una tomografía computarizada muestra un corte transversal de un núcleo de coral. Los pequeños círculos dentro del núcleo son coralitos, las estructuras esqueléticas individuales formadas por pólipos de coral. Crédito: USGS, Dominio público Un núcleo coralino se encuentra en la mesa de examen de un equipo de tomografía computarizada en un hospital antes de ser escaneado. Crédito: Thomas DeCarlo

Sin embargo, no se había realizado un archivo sistemático de datos de imágenes de núcleos coralinos, en parte debido a la falta de un repositorio adecuado. Esta brecha presenta el riesgo de perder imágenes valiosas e impide un intercambio ágil y transparente de las interpretaciones científicas de estas imágenes. Por lo tanto, un repositorio centralizado, virtual y de acceso abierto de imágenes de núcleos coralinos es crucial para fomentar la transparencia científica y preservar estos recursos para investigaciones futuras.

Una aplicación para organizar un repositorio

La aplicación CoralCT se desarrolló para consolidar y organizar escáneres de núcleos coralinos en un repositorio virtual que permite el archivo digital y el análisis de imágenes [DeCarlo et al., 2025]. Actualmente, el repositorio contiene más de 1,000 escaneos de corales recolectados en una amplia gama de regiones de arrecifes coralinos, que incluye la Gran Barrera de Coral, el Caribe y el Mar Rojo. Estos escaneos coralinos han sido aportados por individuos y agencias, como el Servicio Geológico de Estados Unidos (USGS, por sus siglas en inglés) y la Oficina Nacional de Administración Oceánica y Atmosférica (NOAA, por sus siglas en inglés).

Investigadores coralinos suben escaneos de rayos X o de CT a CoralCT y, cuando están listos, pueden hacer que sus datos estén públicamente disponibles para cualquier persona con una computadora y conexión a internet. Este enfoque de transparencia fomenta la colaboración entre investigadores de núcleos coralinos, quienes pueden consultar el directorio de núcleos de la aplicación y ver quién más ha recolectado núcleos en sus áreas de interés. Esto también ayuda a evitar la duplicación innecesaria de esfuerzos de investigación, lo cual es especialmente importante dada la necesidad de reducir el impacto del muestreo en los corales, muchos de los cuales son especies en peligro de extinción.

Utilizando las herramientas analíticas de la aplicación, los observadores pueden mapear las bandas de densidad anuales en núcleos coralinos para extraer datos sobre la tasa de crecimiento y la densidad esquelética. Tal como en estudios de anillos de árboles, este tipo de análisis ofrece información sobre las condiciones medioambientales pasadas, ya que el crecimiento de corales puede responder con sensibilidad a la variabilidad climática.

Por ejemplo, Barkley et al. [2018] utilizaron CoralCT para visualizar bandas de estrés de alta densidad y reconstruir la historia del blanqueamiento de corales a lo largo de seis décadas en un arrecife remoto del Océano Pacífico ecuatorial, donde el monitoreo de datos es escaso. Rodgers et al. [2021] midieron las tasas de crecimiento anual en CoralCT para rastrear la recuperación de corales frente a Kaua’i, Hawaii, en los 15 años posteriores a un evento de inundación devastadora. Más recientemente, DeCarlo et al. [2024] aprovecharon la amplitud de núcleos en CoralCT para reconstruir patrones de crecimiento coralinos en las décadas y siglos recientes a lo largo de miles de kilómetros en el Indo Pacífico.

Rescatando registros antiguos y recolectando nuevos

Archivar datos valiosos que de otro modo podrían perderse es el propósito fundamental de CoralCT. Un destacable ejemplo de cómo cumple este propósito involucra el rescate y la digitalización de imágenes de rayos X de más de 20 núcleos recolectados en el Océano Pacífico entre la década de los 1980 y principios de 2000. Las películas de rayos X, previamente guardadas por un científico jubilado, ahora están archivadas y disponibles para su análisis en CoralCT.

Colecciones más antiguas como estas pueden proporcionar información valiosa sobre el crecimiento coralino antes de que las perturbaciones medioambientales, como el blanqueamiento masivo por estrés térmico, comenzaran a afectarlos.

En un esfuerzo similar, la USGS escaneó recientemente núcleos coralinos en TC que datan de finales de la década de los 1960, algunos de los núcleos más antiguos jamás recolectados [Hudson et al., 1976]. Estos escaneos se están incorporando al repositorio para que puedan ser reanalizados por investigadores ahora y en el futuro. Colecciones más antiguas como estas pueden proporcionar información valiosa sobre el crecimiento coralino antes de que las perturbaciones medioambientales, como el blanqueamiento masivo por estrés térmico, comenzaran a afectarlos.

Además, a estas contribuciones históricas, el repositorio CoralCT continúa creciendo con la incorporación de nuevos datos. Una contribución reciente incluye escaneos de núcleos de arrecifes recolectados en la costa de Hawai’i en 2023 durante la Expedición 389 del Programa Internacional Ocean Discovery. Los núcleos de arrecifes difieren de los núcleos coralinos en composición y estructura, pero también son cruciales para entender la historia oceánica y el cambio medioambiental. Durante la expedición 389, se recolectaron núcleos de arrecifes sumergidos que una vez crecieron cerca de la superficie del océano, pero que dejaron de calcificarse a medida que se sumergían en aguas profundas. Estos núcleos de arrecifes contienen coral fragmentado, algas coralinas, microbialitos y otros materiales constructores de arrecifes, cuyas composiciones permiten a los científicos mirar milenos hacia el pasado y descubrir registros valiosos del nivel del mar y el cambio climático.

Análisis repetibles, resultados verificables

Cuando no se archivan imágenes de núcleos coralinos originales, sin procesar, el valor de las mediciones de crecimiento y otros análisis es limitado porque otros científicos no pueden verificarlos fácil e independientemente. Esto es problemático ya que la ciencia se basa fundamentalmente en la capacidad de repetir experimentos y verificar resultados, sobre todo considerando que investigadores individuales pueden introducir subjetividad y posibles sesgos incluso en interpretaciones de datos altamente sistemáticas y rigurosas. A medida que los conjuntos de datos se hacen más grandes, complejos y numerosos, mantener la transparencia es cada vez más importante, pero también cada vez más difícil.

En esta captura de pantalla de un núcleo coralino analizado en la aplicación CoralCT, las líneas naranjas en la imagen del núcleo indican dónde un observador ha mapeado las bandas de densidad anual. Crédito: Avi Strange

CoralCT aborda estos desafíos garantizando que toda la información y el contexto de un núcleo estén completamente documentados, accesibles y descargables. Esta información incluye metadatos esenciales tales como el origen del núcleo, los detalles de propiedad, la fecha de recolección, la profundidad y la identificación de especies. Y lo que es más importante, CoralCT archiva los mapas de bandas anuales definidos el usuario para derivar datos de la tasa de crecimiento [DeCarlo et al., 2025], asegurando que estos datos e interpretaciones sean totalmente reproducibles y estén abiertos a la verificaciones de otros.

Esta transparencia también se comparte entre los observadores dentro de la aplicación. Cuando un usuario mapea las bandas de un núcleo, este puede agregar notas y captura de pantalla que otros usuarios pueden ver mientras analizan dicho núcleo. Más aún, cuando un usuario termina de mapear las bandas de un núcleo y procesa los datos, esta información se almacena y se puede descargar para que otros científicos la consulten. Esta capacidad permite a los científicos realizar estudios con múltiples observadores, lo que puede reducir posibles sesgos introducidos por la observación individual.

Un desafío que hemos encontrado en nuestros esfuerzos para ampliar CoralCT ha sido la reticencia en algunos investigadores y programas a compartir datos.

A pesar de estas ventajas, un desafío que hemos encontrado en nuestros esfuerzos para ampliar CoralCT ha sido la reticencia en algunos investigadores y programas a compartir datos debido a la preocupación por las infracciones de propiedad intelectual y la “apropiación indebida” de datos prepublicados. Esta reticencia, que es entendible considerando la falta de transparencia y protección para los propietarios de los datos en las prácticas previas de gestión de datos, puede lamentablemente limitar los avances científicos y las colaboraciones que podrían ayudar a abordar el cambio climático, la degradación de arrecifes coralinos y otros desafíos complejos.

Para abordar estas preocupaciones, CoralCT ofrece controles privados a los propietarios de núcleos, que pueden usar para restringir el acceso a sus escaneos y a los datos derivados. Estos controles son particularmente útiles cuando los núcleos son parte de una investigación en curso que aún no se ha publicado o están sujetos a una moratoria posterior al crucero, lo que garantiza que datos sensibles permanezcan protegidos hasta que la investigación esté lista para ser compartida. Además, cada núcleo está identificado con el propietario de los datos, agradecimientos y citas relevantes.

Avanzando hacia la accesibilidad y colaboración

CoralCT también representa un camino para hacer la ciencia más inclusiva y accesible. La aplicación está diseñada con una interfaz fácil de usar e incluye recursos tales como videotutoriales y una guía de usuario paso a paso para ayudar a presentar sus funciones a un público amplio. Recientemente, también se crearon planes de clase para estudiantes de educación media y básica que guían a los estudiantes en el mapeo de las bandas de núcleos de coral en la aplicación, ofreciendo maneras accesibles de explorar las ciencias marinas.

Un estudiante de secundaria que visita el Laboratorio de Esclerocronología de la Universidad de Tulane usa un casco de realidad virtual para interactuar con núcleos coralinos en 3D durante el evento “Boys at Tulane in STEM 2025” de la universidad. Crédito: Danielle Scanlon Estudiantes de secundaria aprenden sobre núcleos de coral gracias a un holograma en un taller de la Universidad del Pacífico de Hawái. Crédito: Thomas DeCarlo

El potencial educacional de la aplicación se demostró en recientes eventos de divulgación. Utilizando tecnología de realidad virtual, estudiantes de secundaria en Nueva Orleans visualizaron escaneos 3D de núcleos de corales desde CoralCT y practicaron la identificación de bandas de densidad anual. En un evento similar, estudiantes de sexto grado en Hawái interactuaron con núcleos holográficos 3D coralinos y aprendieron cómo los científicos los extraen y estudian para comprender los patrones de crecimiento a lo largo del tiempo. Las experiencias positivas de estudiantes y profesores durante estos eventos demostraron cómo CoralCT brinda la oportunidad de interactuar de forma práctica con datos científicos reales.

La integración de IA también podría, y esto es importante, facilitar que todos los usuarios contribuyan al análisis de núcleos coralinos, independientemente de su formación académica o experiencia de campo.

De cara al futuro, existe la posibilidad de integrar inteligencia artificial (IA) en CoralCT para la identificación automatizada de patrones de bandas de coral. Si un sistema de IA se entrenara con interpretaciones humanas existentes, podría sugerir automáticamente marcas de bandas que los usuarios podrían revisar y verificar. Este avance ofrece la posibilidad de realizar análisis de núcleos coralinos más precisos y eficientes, manteniendo la supervisión humana. La integración de IA también podría, y esto es importante, facilitar que todos los usuarios contribuyan al análisis de núcleos coralinos, independientemente de su formación académica o experiencia de campo. Cada nueva contribución o análisis de un núcleo mejora la base de datos CoralCT y amplía nuestro conocimiento de los arrecifes de coral y las condiciones oceánicas pasadas.

La esclerocronología coralina es vital para comprender los cambios medioambientales en los ecosistemas de arrecifes coralinos y los impactos que estos cambios han provocado. Gracias a esta investigación, obtenemos información sobre el pasado del océano y mejoramos nuestra comprensión de los arrecifes de coral actuales. A medida que se intensifican las amenazas a los arrecifes, los grandes conjuntos de datos de acceso abierto son cada vez más esenciales para monitorear la salud de los arrecifes y predecir los impactos futuros.

Por lo tanto, CoralCT desempeña un papel importante en la preservación de valiosos registros del crecimiento de los corales y su historia medioambiental, a la vez que promueve el intercambio colaborativo, accesible y transparente de datos. Al poner la ciencia de los arrecifes de coral a disposición de investigadores y del público en general, conecta datos, ideas y personas para abordar cuestiones cruciales sobre nuestro mundo cambiante.

Agradecimientos

CoralCT se desarrolló con el apoyo de la subvención OCE-2444864 de la National Science Foundation. El uso de nombres comerciales, de empresas o de productos se realiza únicamente con fines descriptivos y no implica su respaldo por parte del gobierno de los Estados Unidos. Agradecemos al Equipo Científico de la Expedición IODP 389, al personal de apoyo del Operador Científico de ECORD (ESO), al equipo de perforación bentónica, a los topógrafos del MMA y al capitán y la tripulación del MMA Valour. La Expedición 389 del Programa Internacional de Ocean Discovery (IODP) contó con el apoyo financiero de las diversas agencias nacionales de financiación de los países participantes en el IODP. También agradecemos a todos los contribuyentes de datos hasta la fecha, entre ellos Giulia Braz, Jessica Carilli, Leticia Cavole, Ben Chomitz, Travis Courtney, Ian Enochs, Thomas Felis, Ke Lin, Malcolm McCulloch, Haojia Ren, Riccardo Rodolfo-Metalpa, Natan Pereira y al Programa de Recursos de Riesgos Costeros y Marinos del Servicio Geológico de los Estados Unidos.

Referencias

Barkley, H. C., et al. (2018), Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016), Commun. Biol., 1, 177, https://doi.org/10.1038/s42003-018-0183-7.

DeCarlo, T. M., et al. (2024), Calcification trends in long-lived corals across the Indo-Pacific during the industrial era, Commun. Earth Environ., 5, 756, https://doi.org/10.1038/s43247-024-01904-8.

DeCarlo, T. M., et al. (2025), CoralCT: A platform for transparent and collaborative analyses of growth parameters in coral skeletal cores, Limnol. Oceanogr. Methods, 23(2), 97–116, https://doi.org/10.1002/lom3.10661.

Hudson, J. H. (1981), Growth rates in Montastraea annularis: A record of environmental change in Key Largo Coral Reef Marine Sanctuary, Florida, Bull. Mar. Sci., 31(2), 444–459, www.ingentaconnect.com/content/umrsmas/bullmar/1981/00000031/00000002/art00014.

Hudson, J. H., et al. (1976), Sclerochronology: A tool for interpreting past environments, Geology, 4(6), 361–364, https://doi.org/10.1130/0091-7613(1976)4<361:SATFIP>2.0.CO;2.

Knutson, D. W., et al. (1972), Coral chronometers: Seasonal growth bands in reef corals, Science, 177(4045), 270–272, https://doi.org/10.1126/science.177.4045.270.

Lough, J. M. (2008), Coral calcification from skeletal records revisited, Mar. Ecol. Prog. Ser., 373, 257–264, https://doi.org/10.3354/meps07398.

Rodgers, K. S., et al. (2021), Rebounds, regresses, and recovery: A 15-year study of the coral reef community at Pila‘a, Kaua‘i after decades of natural and anthropogenic stress events, Mar. Pollut. Bull., 171, 112306, https://doi.org/10.1016/j.marpolbul.2021.112306.

Información de los autores

Avi Strange y Oliwia Jasnos, Universidad de Tulane, Nueva Orleans, Luisiana; Lauren T. Toth, Centro de Ciencias Costeras y Marinas de San Petersburgo, Servicio Geológico de Estados Unidos, Florida; Nancy G. Prouty, Centro de Ciencias Costeras y Marinas del Pacífico, Servicio Geológico de Estados Unidos, Santa Cruz, California; y Thomas M. DeCarlo (tdecarlo@tulane.edu), Universidad de Tulane, Nueva Orleans, Luisiana.

This translation by Daniela Navarro-Perez was made possible by a partnership with Planeteando and Geolatinas. Esta traducción fue posible gracias a una asociación con Planeteando y Geolatinas.

Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Glacier Monitoring from Space Is Crucial, and at Risk

EOS - Fri, 08/08/2025 - 12:00

Shrinking glaciers present some of the most visible signs of ongoing anthropogenic climate change. Their melting also alters landscapes, increases local geohazards, and affects regional freshwater availability and global sea level rise.

Worldwide observations show that global glacier decline through the early 21st century has been historically unprecedented. Modeling research suggests that 16 kilograms of glacier ice melt for every kilogram of carbon dioxide (CO2) emitted, and other studies indicate that every centimeter of sea level rise exposes an additional 2–3 million people to annual flooding.

Science has benefited from a diverse set of spaceborne missions and strategies for estimating glacier mass changes at regional to global scales.

For more than 130 years, the World Glacier Monitoring Service and its predecessor organizations have coordinated international glacier monitoring. This effort started with the worldwide collection, analysis, and distribution of in situ observations [World Glacier Monitoring Service, 2023]. In the 20th century, remote sensing data from airborne and spaceborne sensors began complementing field observations.

Over the past 2 decades, science has benefited from a diverse set of spaceborne missions and strategies for estimating glacier mass changes at regional to global scales (see Figure 2 of Berthier et al. [2023]). However, this research is challenged by its dependence on the open accessibility of observations from scientific satellite missions. The continuation and accessibility of several satellite missions are now at risk, presenting potential major gaps in our ability to observe glaciers from space.

We discuss here the history, strengths, and limitations of several strategies for tracking changes in glaciers and how combining studies from the multiple approaches available—as exemplified by a recent large-scale effort within the research community—improves the accuracy of analyses of glacial mass changes. We also outline actions required to secure the future of long-term glacier monitoring.

The Glacier Mass Balance Intercomparison Exercise

Glaciological observations from in situ measurements of ablation and accumulation, generally carried out with ablation stakes and in snow pits, represent the backbone of glacier mass balance monitoring. For more than 30 years, glaciologists have undertaken this work at 60 reference glaciers worldwide, with some observations extending back to the early 20th century.

Researchers conduct glaciological fieldwork, using ablation stakes and other tools, on Findelengletscher in Zermatt, Switzerland, in October 2024. Credit: Andreas Linsbauer, University of Zurich

These observations provide good estimates of the interannual variability of glacier mass balance and have been vital for process understanding, model calibration, and long-term monitoring. However, because of the limited spatial coverage of in situ observations, the long-term trends they indicate may not accurately represent mass change across entire glacial regions, and some largely glacierized regions are critically undersampled.

Airborne geodetic surveys provide wider views of individual glaciers compared with point measurements on the ground, and comparing ice elevation changes in airborne data allows researchers to identify and quantify biases in field observations at the glacier scale [Zemp et al., 2013]. Meanwhile, geodetic surveys from spaceborne sensors enable many opportunities to assess glacier elevation and mass changes at regional to global scales.

The Glacier Mass Balance Intercomparison Exercise (GlaMBIE), launched in 2022, combined observations from in situ and remote sensing approaches, compiling 233 regional glacier mass change estimates from about 450 data contributors organized in 35 research teams.

The results of the Glacier Mass Balance Intercomparison Exercise show that since 2000, glaciers have lost between 2% and 39% of their mass depending on the region and about 5% globally.

The results of this community effort, published in February 2025, show that since 2000, glaciers have lost between 2% and 39% of their mass depending on the region and about 5% globally [The GlaMBIE Team, 2025]. These cumulative losses amount to 273 gigatons of water annually and contribute 0.75 millimeter to mean global sea level rise each year. Compared with recent estimates for the ice sheets [Otosaka et al., 2023], glacier mass loss is about 18% larger than the loss from the Greenland Ice Sheet and more than twice the loss from the Antarctic Ice Sheet.

GlaMBIE provided the first comprehensive assessment of glacier mass change measurements from heterogeneous in situ and spaceborne observations and a new observational baseline for global glacier change and impact assessments [Berthier et al., 2023]. It also revealed opportunities and challenges ahead for monitoring glaciers from space.

Strategies for Glacier Monitoring from Space

GlaMBIE used a variety of technologies and approaches for studying glaciers from space. Many rely on repeated mapping of surface elevations to create digital elevation models (DEMs) and determine glacier elevation changes. This method provides multiannual views of glacier volume changes but requires assumptions about the density of snow, firn, and ice to convert volume changes to mass changes, which adds uncertainty because conversion factors can vary substantially.

Optical stereophotogrammetry applied to spaceborne imagery allows assessment of glacier elevation changes across scales. Analysis of imagery from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on board Terra from 2000 to 2019 yielded elevation changes at 100-meter horizontal resolution for almost all of Earth’s glaciers [Hugonnet et al., 2021]. At the regional scale, finer spatial resolution is possible with the ongoing French Satellite pour l’Observation de la Terre (SPOT) mission series and with satellites like GeoEye, Pléiades, and WorldView.

The Glacier Mass Balance Intercomparison Exercise (GlaMBIE) used data from a fleet of satellites that monitor glaciers worldwide using optical, radar, laser, and gravity measurements. Clockwise from left in this image are illustrations of Terra, CryoSat, ICESat-2, and the twin GRACE spacecraft above a map of elevation change for the Vatnajökull ice cap in Iceland. Credit: ESA/NASA/Planetary Visions

Two spaceborne missions applying synthetic aperture radar (SAR) interferometry have been used to assess glacier elevation changes. In February 2000, the Shuttle Radar Topography Mission (SRTM) produced a near-global DEM at a spatial resolution of 30 meters. The second mission, TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X), has operated since 2010, providing worldwide DEMs at a pixel spacing of 12 meters.

Data from both missions can be used to assess glacier elevation changes in many regions [Braun et al., 2019], capitalizing on the high spatial resolution and the ability of radar signals to penetrate clouds. However, measurements using C- and X-band radar—as both SRTM and TanDEM-X have—are subject to uncertainties because of topographic complexity in high mountain terrain and because the radar signals can penetrate into snow and firn.

Laser and radar altimetry allow us to determine glacier elevation changes along ground tracks or swaths, which can be aggregated to produce regional estimates. Laser altimetry has been carried out by NASA’s Ice, Cloud and Land Elevation Satellites (ICESat and ICESat-2) and the Global Ecosystem Dynamics Investigation (GEDI) on board the International Space Station (ISS) [Menounos et al., 2024; Treichler et al., 2019].

Spaceborne gravimetry offers an alternative to elevation-focused methods, allowing scientists to estimate mass changes by measuring changes in Earth’s gravitational field.

Spaceborne radar altimetry has a long tradition of measuring ocean and land surfaces, but these missions’ large detection footprints and the challenges of mountainous terrain hampered the use of early missions (e.g., ERS, Envisat) for glacier applications. The European Space Agency’s (ESA) CryoSat-2, which launched in 2010, offered improved coverage of the polar regions, denser ground coverage, a sharper footprint, and other enhanced capabilities that opened its use for monitoring global glacier elevation changes [Jakob and Gourmelen, 2023].

Both laser altimetry and radar altimetry provide elevation change time series at monthly or quarterly resolution for regions with large ice caps and ice fields (e.g., Alaska, the Canadian Arctic, Svalbard, and the periphery of the Greenland and Antarctic Ice Sheets). However, assessing mountain regions with smaller glaciers (e.g., Scandinavia, central Europe, Caucasus, and New Zealand) remains challenging because of the complex terrain and limited spatial coverage.

Spaceborne gravimetry offers an alternative to elevation-focused methods, allowing scientists to estimate mass changes across the ocean and in water and ice reservoirs by measuring changes in Earth’s gravitational field. Two missions, the NASA/German Aerospace Center Gravity Recovery and Climate Experiment (GRACE) and the NASA/GFZ Helmholtz Centre for Geosciences GRACE Follow-on mission (GRACE-FO), have provided such measurements almost continuously since 2002.

Gravimetry offers more direct estimates of glacier mass change than other methods [Wouters et al., 2019]. However, the data must be corrected to account for effects of atmospheric drag and oceanic variability, glacial isostatic adjustment, nonglacier hydrological features, and other factors [Berthier et al., 2023].

Estimates from the GRACE and GRACE-FO missions are most relevant for regions with large areas of glacier coverage (>15,000 square kilometers) because of the relatively coarse resolution (a few hundred kilometers) of the gravity data and because of issues such as poor signal-to-noise ratios in regions with small glacier areas and related small mass changes.

Securing Glacier Monitoring over the Long Term

The work of GlaMBIE to combine observations from the diverse approaches above points to several interconnected requirements and challenges for improving the comprehensiveness of global glacier change assessments and securing the future of long-term glacier monitoring.

First, we must extend the existing network of in situ glaciological observations to fill major data gaps. Such gaps remain in many regions, including Central Asia, Karakoram, Kunlun, and the Central Andes, where glaciers are vital for freshwater availability, as well as in the polar regions, where glaciers are key contributors to sea level rise. These networks also need to be updated to provide real-time monitoring, which will improve understanding of glacier processes and help calibrate and validate remote sensing data and numerical modeling.

A sequence of aerial photographs taken in 1980 from about 11,000-meter altitude of Grey Glacier in the Southern Patagonian Ice Field (top) was used to generate a 3D model of the glacier (bottom). Credit: 3D reconstruction by Livia Piermattei and Camilo Rada using images from the Servicio Aerofotogramétrico de la Fuerza Aérea de Chile (SAF)

Second, we must continue unlocking historical archives of airborne and spaceborne missions to expand the spatiotemporal coverage of the observations used in glacier mass change assessments. Data from declassified spy satellites, such as CORONA and Hexagon, have provided stereo observing capabilities at horizontal resolutions of a few meters and offer potential to assess glacier elevation changes back to the 1960s and 1970s. Aerial photography has provided unique opportunities to reconstruct glacier changes since the early 20th century, such as in Svalbard, Greenland, and Antarctica. Beyond individual and institutional studies, we need open access to entire national archives of historical images to safeguard records of past glacier changes on a global scale.

We must ensure the continuation of space-based glacier monitoring with open-access and high-resolution sensors.

Third, we must ensure the continuation of space-based glacier monitoring with open-access and high-resolution sensors, following the examples of the Sentinel missions, SPOT 5, and Pléiades. For optical sensors, there is an urgent need for new missions collecting open-access, high-resolution stereo imagery. The French space agency’s forthcoming CO3D (Constellation Optique en 3D) mission, scheduled for launch in 2025, will help meet this need if its data are openly available. But with the anticipated decommissioning of ASTER [Berthier et al., 2024] and the suspended production of new ArcticDEM and REMA (Reference Elevation Model of Antarctica) products from WorldView satellite data as a result of recent U.S. funding cuts, additional replacement missions are needed to observe elevation changes over individual glaciers.

For radar imaging and altimetry, the SAR mission TanDEM-X and the radar altimeter CryoSat-2 are still operating with expected mission extensions into the late 2020s, and ESA’s SAR-equipped Harmony mission is expected to launch in 2029. With the planned launch of the Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) in 2027, ESA aims to establish a long-term, cryosphere-specific monitoring program.

The challenge with CRISTAL will be to ensure that its sensor and mission specifications are tailored for application over glaciers—a difficult task because of glaciers’ relatively small sizes, steep slopes, and distribution in mountain terrain. In the event of a gap between the end of CryoSat-2 and the start of CRISTAL, a bridging airborne campaign, similar to NASA’s Operation IceBridge between ICESat and ICESat-2, will be needed.

Grosser Aletschgletscher in Switzerland, seen in October 2015. Credit: Jürg Alean, SwissEduc, Glaciers online

For laser altimetry, we may face gaps in observations as well, as no follow-on is planned for the current ICESat-2 and GEDI science missions. ICESat-2, which measures Earth’s glacier topography and provides validation and coregistration points for other altimetry missions, is projected to run until the early to mid-2030s, but continuing missions must be initiated now. Future missions should combine high accuracy with full coverage over individual glaciers. Proposed concepts with swath lidar, such as EDGE (Earth Dynamics Geodetic Explorer) and CASALS (Concurrent Artificially-Intelligent Spectrometry and Adaptive Lidar System), could be game changers for repeated mapping because they would provide full coverage of glacier topography. Advancing Surface Topography and Vegetation (STV) as a targeted observable for NASA missions, as recommended by the National Academies’ 2017–2027 Decadal Survey, could extend such observations beyond the current science missions.

For gravimetry, we also face a potential gap in observations, depending on when GRACE-FO is decommissioned and when approved follow-up missions—GRACE-C and NGGM (Next Generation Gravity Mission)—launch. Regardless of launch dates, the usefulness of future missions for monitoring glacier mass changes across regions will strongly depend on the spatial resolution of their data and on the ability to separate glacier and nonglacier signals. Cofounded gravity missions such as the Mass-Change and Geosciences International Constellation (MAGIC), a planned joint NASA-ESA project with four satellites operating in pairs, could significantly improve the spatial and temporal resolution of the gravity data and their utility for glacier monitoring.

Bringing It All Together

Glaciers worldwide are diminishing at alarming rates, affecting everything from geohazards to freshwater supplies to sea level rise.

Glaciers worldwide are diminishing with global warming, and they’re doing so at alarming rates, affecting everything from geohazards to freshwater supplies to sea level rise. Understanding as well as possible the details of glacier change from place to place and how these changes may affect different communities requires combining careful observations from a variety of field, airborne, and—increasingly—spaceborne approaches.

In light of major existing and impending observational gaps, the scientific community along with government bodies and others should work together to expand access to relevant historical data and extend present-day monitoring capabilities. Most important, space agencies and their sponsor nations must work rapidly to replace and improve upon current satellite missions to ensure long-term glacier monitoring from space. Given the climate crisis, we also call for open scientific access to data from commercial and defense missions to fill gaps and complement civil missions.

As the work of GlaMBIE reiterated, the more complete the datasets we have, the better positioned we will be to comprehend and quantify glacier changes and related downstream impacts.

Acknowledgments

We thank Etienne Berthier, Dana Floricioiu, and Noel Gourmelen for their contributions to this article and all coauthors and data contributors of GlaMBIE for constructive and fruitful discussions during the project, which built the foundation to condense the information presented here. This article was enabled by support from ESA projects GlaMBIE (4000138018/22/I-DT) and The Circle (4000145640/24/NL/SC), with additional contributions from the International Association of Cryospheric Sciences (IACS).

References

Berthier, E., et al. (2023), Measuring glacier mass changes from space—A review, Rep. Prog. Phys., 86(3), 036801, https://doi.org/10.1088/1361-6633/acaf8e.

Berthier, E., et al. (2024), Earth-surface monitoring is at risk—More imaging tools are urgently needed, Nature, 630(8017), 563, https://doi.org/10.1038/d41586-024-02052-x.

Braun, M. H., et al. (2019), Constraining glacier elevation and mass changes in South America, Nat. Clim. Change, 9(2), 130–136, https://doi.org/10.1038/s41558-018-0375-7.

Hugonnet, R., et al. (2021), Accelerated global glacier mass loss in the early twenty-first century, Nature, 592(7856), 726–731, https://doi.org/10.1038/s41586-021-03436-z.

Jakob, L., and N. Gourmelen (2023), Glacier mass loss between 2010 and 2020 dominated by atmospheric forcing, Geophys. Res. Lett., 50(8), e2023GL102954, https://doi.org/10.1029/2023GL102954.

Menounos, B., et al. (2024), Brief communication: Recent estimates of glacier mass loss for western North America from laser altimetry, Cryosphere, 18(2), 889–894, https://doi.org/10.5194/tc-18-889-2024.

Otosaka, I. N., et al. (2023), Mass balance of the Greenland and Antarctic Ice Sheets from 1992 to 2020, Earth Syst. Sci. Data, 15(4), 1,597–1,616, https://doi.org/10.5194/essd-15-1597-2023.

The GlaMBIE Team (2025), Community estimate of global glacier mass changes from 2000 to 2023, Nature, 639, 382–388, https://doi.org/10.1038/s41586-024-08545-z.

Treichler, D., et al. (2019), Recent glacier and lake changes in high mountain Asia and their relation to precipitation changes, Cryosphere, 13(11), 2,977–3,005, https://doi.org/10.5194/tc-13-2977-2019.

World Glacier Monitoring Service (2023), Global Glacier Change Bulletin No. 5 (2020–2021), edited by M. Zemp et al., 134 pp., Zurich, Switzerland, https://wgms.ch/downloads/WGMS_GGCB_05.pdf.

Wouters, B., A. S. Gardner, and G. Moholdt (2019), Global glacier mass loss during the GRACE satellite mission (2002–2016), Front. Earth Sci., 7, 96, https://doi.org/10.3389/feart.2019.00096.

Zemp, M., et al. (2013), Reanalysing glacier mass balance measurement series, Cryosphere, 7(4), 1,227–1,245, https://doi.org/10.5194/tc-7-1227-2013.

Author Information

Michael Zemp (michael.zemp@geo.uzh.ch), University of Zurich, Switzerland; Livia Jakob, Earthwave Ltd., Edinburgh, U.K.; Fanny Brun, Université Grenoble Alpes, Grenoble, France; Tyler Sutterley, University of Washington, Seattle; and Brian Menounos, University of Northern British Columbia, Prince George, Canada

Citation: Zemp, M., L. Jakob, F. Brun, T. Sutterley, and B. Menounos (2025), Glacier monitoring from space is crucial, and at risk, Eos, 106, https://doi.org/10.1029/2025EO250290. Published on [DAY MONTH] 2025. Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

The challenges of the valley blocking landslide in the Matia’an Valley in Wanrong township, Taiwan

EOS - Fri, 08/08/2025 - 06:30

The 21 July 2025 rock avalanche is generating a lake that could have a volume of 86 million cubic metres at the point of overtopping. This poses a threat to at least seven downstream communities in east Taiwan.

Yesterday, I posted about the enormous 21 July 2025 rock avalanche in the Matia’an valley, in Wanrong township in eastern Taiwan. Coincidentally, etaiwan.news has posted an article about the landslide that includes some images of it, and that highlights the growing concerns about the potential hazard from the landslide dammed lake.

So, let’s start with the images. This is the headscarp area:

The headscarp area of the 21 July 2025 landslide in the Matia’an valley in Taiwan. Image by etaiwan.news.

The large source area is clear in the upper left of the image. Note the dust cloud from continued rockfall activity. The initial track of the landslide has left a complex topography that includes bare rock and some landslide material (especially on the right side of the image).

This image captures the lake that is forming:-

The barrier lake of the 21 July 2025 landslide in the Matia’an valley in Taiwan. Image by etaiwan.news.

Note the very substantial height difference between the lake and the top of the landslide deposit. Given that this valley was free draining before the landslide occurred, this must all be landslide material. As such it is erodable in the event of overtopping.

Finally, this is a view of the whole length of the landslide:-

The entire track of the 21 July 2025 landslide in the Matia’an valley in Taiwan. Image by etaiwan.news.

Again, note the height of the saddle formed from landslide material. The deposit appears on first inspection to be steep, which suggests it might be quite erodible.

The etaiwan.news article highlights work being undertaken by the Hualien Branch of the Forestry Conservation Department to understand the hazard. The statistics of the dam are concerning:

As of 7 August 2025At overtoppingLake volume23 million m386 million m3Lake length1,770 m2,900 m

The current freeboard is 79 m. Current inflow into the lake is 920,000 m3 per day, giving an overtopping date of mid-October at current rates (but see below).

A key issue is then the assets at risk downstream. This is a Google Earth image of the channel entering the Longitudinal Valley:-

Google Earth image of downstream assets from the landslide dam in the Matia’an Valley in Taiwan.

The article mentions that the risk will extend to:-

“will include the Matai’an Creek Bridge on the downstream Taiwan Line 9 [this is main highway on the eastern side of Taiwan], public and private river defence facilities and settlements on both sides of the river, and the administrative area covers Mingli Village, Dama Village, Daping Village, Dongfu Village in Wanrong Township, and Changqiaoli, Darongli and Shanxingli in Fenglin Township.”

Taiwan is well-placed to manage this hazard, but it is going to be a major issue in the coming weeks. Finally, as noted above, the overtopping date is estimated from current inflow rates. But, the next few weeks are the peak of the typhoon season, which can bring exceptional rainfall.

And, right on cue, Tropical Storm Podul has formed to the east of Taiwan, and is now moving westward. It is too early to tell whether this will bring heavy rainfall to the Matia’an valley (it is likely to pass by Taiwan on about 13 – 14 August), but if it does then this will accelerate the filling of the lake. Even if it does not bring heavy rainfall, the development of another typhoon that affects this area in the next two months would not be a surprise.

Return to The Landslide Blog homepage Text © 2023. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

New study reveals surprising clues about the beginning of subduction on Earth

Phys.org: Earth science - Thu, 08/07/2025 - 19:50
Subduction, a crucial geological process on Earth, may have begun hundreds of millions of years earlier than traditionally believed.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer