Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, 2024
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Development of a novel storm surge inundation model framework for efficient prediction
Xuanxuan Gao, Shuiqing Li, Dongxue Mo, Yahao Liu, and Po Hu
Geosci. Model Dev., 17, 5497–5509, https://doi.org/10.5194/gmd-17-5497-2024, 2024
Storm surges generate coastal inundation and expose populations and properties to danger. We developed a novel storm surge inundation model for efficient prediction. Estimates compare well with in situ measurements and results from a numerical model. The new model is a significant improvement on existing numerical models, with much higher computational efficiency and stability, which allows timely disaster prevention and mitigation.
Evaluation of Dust Emission and Land Surface Schemes in Predicting a Mega Asian Dust Storm over South Korea Using WRF-Chem (v4.3.3)
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev. Discuss., https//doi.org/10.5194/gmd-2024-114,2024
Preprint under review for GMD (discussion: open, 0 comments)
This study evaluates the WRF-Chem model's prediction of a mega Asian Dust Storms (ADSs) over South Korea on March 28–29, 2021. We assessed five dust emission and four land surface schemes for predicting ADSs. Using surface observations and remote sensing data, we examined variables, such as temperature, humidity, wind speed, PM10, and aerosol optical depth. The UoC04 dust emission and CLM4 land surface scheme combination reduced RMSE for PM10 by up to 29.6 %, showing the best performance.
Insights into ground strike point properties in Europe through the EUCLID lightning location system
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, 2024
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Abstract
The cooling effect of the ocean on the Southern California coastal zone is investigated using a high-resolution (4-km) gridded surface meteorological data set (gridMET) of daily maximum temperature (Tmax), with focus on summer mean conditions, taken as the July–August–September (JAS) average. An empirical orthogonal function analysis reveals a coastal mode of JAS temperature covariability, distinct from a more energetic inland mode, that captures Tmax averaged across the Southern California coastal plain. The coastal mode temperature correlates significantly with, and has similar amplitude to, regional sea surface temperature (SST). High (low) summer land and sea surface temperatures, as well as inversion layer temperature differences, are associated with decreases (increases) of northerly coastal wind speeds and coastal cloudiness. The number of extreme heat days on land increases as regional SST increases (4.3 days °C−1), with heat wave days 10 times more likely during peak warm versus cool coastal mode years. The coastal zone was notably warmer and heat wave days peaked during the well documented marine heat wave events of 2014/15 and 2018 off Southern California. The marine variability associated with the coastal mode also has strong expression off the Baja California peninsula, presumably due to strong covarying winds in that area. As in previous studies, higher ocean temperatures are attributed to weaker summer winds, with associated reductions in ocean surface heat loss, coastal upwelling, and cloudiness.
Abstract
The Atlantic Meridional Overturning Circulation (AMOC) plays a critical role in the global climate system through the redistribution of heat, freshwater and carbon. At 26.5°N, the meridional heat transport has traditionally been partitioned geometrically into vertical and horizontal circulation cells; however, attributing these components to the AMOC and Subtropical Gyre (STG) flow structures remains widely debated. Using water parcel trajectories evaluated within an eddy-rich ocean hindcast, we present the first Lagrangian decomposition of the meridional heat transport at 26.5°N. We find that water parcels recirculating within the STG account for 37% (0.36 PW) of the total heat transport across 26.5°N, more than twice that of the classical horizontal gyre component (15%). Our findings indicate that STG heat transport cannot be meaningfully distinguished from that of the basin-scale overturning since water parcels cooled within the gyre subsequently feed the northward, subsurface limb of the AMOC.
Abstract
Giant undulations (GUs) have been well established to be the optical manifestation of the plasmapause surface wave (PSW) where the wave-particle interactions provide particle sources to generate auroras. However, their detailed particles precipitation signatures in the ionosphere remain unclear. Here we analyze multi-satellite conjugated observations in the ionosphere during a prominent GUs event, revealing the two-zone precipitation pattern including energetic proton precipitations responsible for the main body of GUs and low-energy electron precipitations for the edge of GUs. Interestingly, the occurrence of GUs is also accompanied with high-energy particles precipitations of hundreds of keV and magnetic disturbances of three components. The sizes of sawtooth in the GUs correlate positively with the strength of adjacent subauroral polarization streams (SAPS). The two-zone precipitation pattern and high-energy particles precipitation over GUs are potentially related to the plasma sheet and very-low frequency wave (VLF) modulation of the PSW, respectively.
Abstract
HiRISE images and digital elevation models (DEMs) of outcrops in candidate Martian glaciovolcanoes provide more detailed evidence for glaciovolcanic processes than has previously been available for Mars. A group of ridges in the Pavonis Mons fan-shaped glacial deposit features pervasive layering, evidence for local collapse and slumping, and steeper faces in the direction of paleoglacier flow inferred from other features in the deposit. After comparison with terrestrial analogs, we conclude that these ridges are excellent candidates for tephra-dominated tindar, formed in phreatomagmatic subglacial eruptions. The englacial meltwater lakes required for a phreatomagmatic origin represent a rare example of voluminous surface water bodies in the Late Amazonian of Mars.
Abstract
Mineral dust plays an important role in Earth's climate system, yet it is difficult to identify dust imprints in paleofluvial sediments, especially on orbital timescales. Here, we present high-resolution authigenic carbonate Ca–Mg–Sr compositions in a fluvial sequence under the transport pathway of Asian dust. The Mg/Ca, Sr/Ca, and Mg/Sr ratios exhibit distinct transitions in both secular trends and orbital cycles at ∼8 Ma. Before ∼8 Ma, given similar Mg and Sr partitioning behaviors during carbonate formation, hydroclimate changes yielded strong orbital signals in the Sr/Ca and Mg/Ca ratios but no detectable signals in the Mg/Sr ratios. After ∼8 Ma, given the strengthened input of Mg-rich dust during cold‒dry periods, the Mg/Sr and Mg/Ca ratios clearly exhibited orbital signals, but the Sr/Ca ratio did not. Such transitions in carbonate composition corroborate the dust-induced changes in fluvial hydrochemistry, offering an innovative methodology for detecting orbital dust cycles in paleofluvial systems.
First atmospheric aerosol-monitoring results from the Geostationary Environment Monitoring Spectrometer (GEMS) over Asia
Yeseul Cho, Jhoon Kim, Sujung Go, Mijin Kim, Seoyoung Lee, Minseok Kim, Heesung Chong, Won-Jin Lee, Dong-Won Lee, Omar Torres, and Sang Seo Park
Atmos. Meas. Tech., 17, 4369–4390, https://doi.org/10.5194/amt-17-4369-2024, 2024
Aerosol optical properties have been provided by the Geostationary Environment Monitoring Spectrometer (GEMS), the world’s first geostationary-Earth-orbit (GEO) satellite instrument designed for atmospheric environmental monitoring. This study describes improvements made to the GEMS aerosol retrieval algorithm (AERAOD) and presents its validation results. These enhancements aim to provide more accurate and reliable aerosol-monitoring results for Asia.
Abstract
We estimate depth-dependent azimuthal anisotropy and shear wave velocity structure beneath the Alaska subduction zone by the inversion of a new Rayleigh wave dispersion dataset from 8 to 85 s period. We present a layered azimuthal anisotropy model from the forearc region offshore to the subduction zone onshore. In the forearc crust, we find a trench-parallel pattern in the Semidi and Kodiak segments, while a trench-oblique pattern is observed in the Shumagins segment. These fast directions agree well with the orientations of local faults. Within the subducted slab, a dichotomous pattern of anisotropy fast axes is observed along the trench, which is consistent with the orientation of fossil anisotropy generated at the mid-ocean ridges of the Pacific-Vancouver and Kula-Pacific plates that is preserved during subduction. Beneath the subducted slab, a trench-parallel pattern is observed near the trench, which may indicate the direction of mantle flow.
Abstract
Although the 2021 Western North America (WNA) heat wave was predicted by weather forecast models, questions remain about whether such strong events can be simulated by global climate models (GCMs) at different model resolutions. Here, we analyze sets of GCM simulations including historical and future periods to check for the occurrence of similar events. High- and low-resolution simulations both encounter challenges in reproducing events as extreme as the observed one, particularly under the present climate. Relatively stronger amplitudes are observed during the future periods. Furthermore, high- and low-resolution short initialized GCM simulations are both able to reasonably predict such strong events and their associated high-pressure ridge over the WNA with a 1 week forecast lead time. Moisture sensitivity experiments further indicate a drier atmospheric moisture condition results in substantially higher near-surface temperatures in the simulated heat events.
Abstract
Investigating the carbonate preservation efficiency (CPE) of continental crust is crucial to understand the global carbon cycle, which requires constraints on initial carbonate abundances (ICAs) of crustal rocks. To link Mg isotopes to ICAs, we present elemental and Mg isotopic data for Himalayan carbonate-bearing and carbonate-free metasedimentary rocks. Given no evident melt extraction or external-fluid infiltration, ICAs of these samples can be independently estimated by elemental data. Despite different carbonate species in the protoliths, all the samples show congruent relationship between their δ26Mg and ICAs, owing to the elevated carbonate δ26Mg and Mg/Ca in protoliths of calcite-rich samples resulting from diagenetic processes. When collated with literature data, we suggest the observed correlation here can be applied to most carbonate-bearing (meta-)sedimentary rocks. Based on a steady state box-model, we constrained the modern net carbonate accretion flux (9.50−5.56+9.50 ${9.50}_{-5.56}^{+9.50}$ Tmol/year) and the average time-integrated CPE (∼80−43+20 ${80}_{-43}^{+20}$%) for continental crust.
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024, 2024
The representation of clouds in numerical weather and climate models remains a major challenge that is difficult to address because of the limitations of currently available data records of cloud properties. In this work, we address this issue by using machine learning to extract novel information on ice clouds from a long record of satellite observations. Through extensive validation, we show that this novel approach provides surprisingly accurate estimates of clouds and their properties.
Sensitivity analysis of a Martian atmospheric column model with data from the Mars Science Laboratory
Joonas Leino, Ari-Matti Harri, Mark Paton, Jouni Polkko, Maria Hieta, and Hannu Savijärvi
Ann. Geophys., 42, 331–348, https://doi.org/10.5194/angeo-42-331-2024, 2024
The 1-D column model has been used extensively in studying the Martian atmosphere. In this study, we investigated the sensitivity of the column model to its initialization. The results of the model were compared with Curiosity rover measurements. The initial value of airborne dust and surface temperature had the greatest influence on the temperature prediction, while the initial atmospheric moisture content and the shape of the initial moisture profile modified the humidity prediction the most.
Abstract
The Equatorial Electrojet (EEJ) is one of the important near-earth space weather phenomena which exhibits significant diurnal, seasonal and solar activity variations. This paper investigates the EEJ variations at diurnal, seasonal and solar cycle time scales from the Indian sector and portrays a new empirical EEJ field model developed using the observations spanning over nearly two solar cycles. The Method of Naturally Orthogonal Components (MNOC), also known as Principal Component Analysis (PCA), was employed to extract the dominant patterns of principal diurnal, semi-diurnal, and ter-diurnal components contributing to the EEJ variation. The amplitudes of these diurnal, semi-diurnal, and ter-diurnal components in EEJ are found to vary significantly with the season and solar activity. The seasonal and solar activity dependencies of these principal components are modeled using suitable bimodal distribution functions. Finally, the empirical model for EEJ field was built by combining the principal components with their corresponding modeled amplitudes. This model accurately reproduces the diurnal, seasonal and solar activity variations of EEJ. The modeled monthly mean variations of EEJ field at ground exhibit excellent correlation of 0.96 with the observations with the root mean square error <5 nT. It also successfully captures the seasonal and solar activity variations of Counter Electrojet (CEJ). Finally, this model named “Indian Equatorial Electrojet (IEEJ) Model” is made publicly available for interested scientific users (https://iigm.res.in/system/files/IEEJ_model.html).
Abstract
This paper investigates the impact of a powerful gamma ray burst (GRB) that occurred on 9 October 2022, on the Earth's environment using a very low frequency receiver (VLF) to probe the lower ionospheric region (the D region). In addition to the VLF data analysis, we employ numerical simulation through the Long Wavelength Propagation Capability code (LWPC) to derive the increase in the D− region electron density. Our results revealed discernible perturbations in amplitude and phase across all transmitter paths (NAA, DHO, ICV, and NSC) to the Algiers receiver persisting for 40 min. At the maximum of the signal perturbation, the LWPC simulation results showed a decrease in the mean new reference height h′ from 74 to 65.71 km, along with an increase in the sharpness factor β from 0.3 to 0.4875 km−1. Under these new conditions, the electron density increased from its ambient value (216.10 cm−3) to 33.7 103 cm−3.
Abstract
The ability to understand and model ionospheric plasma flow on all spatial scales has important implications for operational space weather models. This study exploits a recently developed method to statistically separate large-scale and meso-scale contributions to probability density functions (PDFs) of ionospheric flow vorticity measured by the Super Dual Auroral Radar Network (SuperDARN). The SuperDARN vorticity data are first sub-divided depending on the Interplanetary Magnetic Field (IMF) direction, and the separation method is applied to PDFs of vorticity compiled in spatial regions of size 1° of geomagnetic latitude by 1 hr of magnetic local time, covering much of the high-latitude ionosphere in the northern hemisphere. The resulting PDFs are fit by model functions using maximum likelihood estimation (MLE) and the spatial variations of the MLE estimators for both the large-scale and meso-scale components are presented. The spatial variations of the large-scale vorticity estimators are ordered by the average ionospheric convection flow, which is highly dependent on the IMF direction. The spatial variations of the meso-scale vorticity estimators appear independent of the senses of vorticity and IMF direction, but have a different character in the polar cap, the cusp, the auroral region, and the sub-auroral region. The paper concludes by discussing the sources of the vorticity components in the different regions, and the consequences for the fidelity of ionospheric plasma flow models.
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, 2024
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
The Record-Breaking Precipitation Event of December 2022 in Portugal
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci. Discuss., https//doi.org/10.5194/nhess-2024-130,2024
Preprint under review for NHESS (discussion: open, 0 comments)
Here we investigate the synoptic evolution associated with the occurrence of an atmospheric river leading to a 24 h record-breaking extreme precipitation event (120.3 mm) in Lisbon, Portugal, on 13 December 2022. The synoptic background allowed the formation, on 10 December, of an atmospheric river associated with a deep extratropical cyclone and with a high moisture content and an inflow of moisture, due to the warm conveyor belt, throughout its life cycle. The system made landfall on day 12.