Feed aggregator

Underground water channels preserve ancient climate records in their shape

Phys.org: Earth science - Wed, 05/28/2025 - 16:56
Water reshapes Earth through slow, powerful erosion, carving intricate landscapes like caves and pinnacles in soluble rocks such as limestone. An international team from the Faculty of Physics at the University of Warsaw, the University of Florida, and the Institute of Earth Sciences in Orléans has discovered that vertical channels, known as karstic solution pipes, preserve a record of Earth's climatic history.

Water density shifts can drive rapid changes in AMOC strength

Phys.org: Earth science - Wed, 05/28/2025 - 16:28
In the Atlantic Ocean, a system of currents carries vast amounts of warm, salty surface water northward. As this water reaches higher latitudes and becomes colder, it sinks and joins a deep, southward return flow. This cycle, known as the Atlantic Meridional Overturning Circulation (AMOC), plays an important role in Earth's climate as it redistributes heat, nutrients, and carbon through the ocean.

Why slower-sinking microorganisms are bad news for the climate

Phys.org: Earth science - Wed, 05/28/2025 - 14:16
Organic particles that settle on the seabed ensure CO2 stays locked. However, natural gel-like substances slow down this process. Such microscale mechanisms play a crucial role in enhancing climate predictions.

Groundwater is rapidly declining in the Colorado River Basin, satellite data show

Phys.org: Earth science - Wed, 05/28/2025 - 13:55
As the Colorado River's giant reservoirs have declined during the last two decades, even larger amounts of water have been pumped and drained from underground, according to new research based on data from NASA satellites.

As Climate Changes, So Do Gardens Across the United States

EOS - Wed, 05/28/2025 - 13:44

Pine Hollow Arboretum’s founder, John W. Abbuhl, began planting trees around his Albany, N.Y., home in the 1960s. He planted species native to surrounding ecosystems but also made ambitious choices—bald cypresses, magnolias, pawpaws, sweetgums—that were more climatically suited to the southeastern United States.

Now, those very trees are thriving, said Dave Plummer, a horticulturalist at Pine Hollow. 

Other Pine Hollow trees, such as balsam firs native to New York, have struggled with this century’s warming winters. “We’re noticing they’re not doing as well as they were maybe 5 to 10 years ago,” Plummer said. “These are trees that are just meant to be in more northern climates where the winters are harsher, and we just don’t have those winters [anymore].”

Pine Hollow Arboretum is one of many botanical gardens rethinking their planting strategies as the climate warms. These strategies range from testing out new, warmth-loving plants to putting more resources toward pest and invasive species management. 

Planting Zones Shift North

The U.S. Department of Agriculture recognizes 13 plant hardiness zones based on a region’s coldest annual temperatures, averaged over a period of 30 years. These zones guide gardeners’ planting decisions by advising which species of plants, especially perennials, are most likely to thrive in a specific zone.

A new report from Climate Central, a climate change research and communication nonprofit, lays out stark changes to these zones.

Scientists compared 30-year coldest temperature averages from the past (1951–1980) and present (1995–2024) at 247 locations across the United States using NOAA’s Applied Climate Information System dataset. They found that 67% of locations have shifted to warmer zones since the 1951–1980 period.

“The effects of a changing climate on plants and plant communities will be significant and, unfortunately, without precedent.”

They also used the most recently released phase of the Coupled Model Intercomparison Project (CMIP) to simulate how planting zones might shift by mid-century. In the CMIP6 scenario they used, carbon emissions decline but do not stay under Paris Agreement limits, a framework consistent with the Shared Socioeconomic Pathway 2-4.5 “middle of the road” scenario.

The models predict that the mid-century average annual coldest temperatures during the 2036–2065 time period will warm in 100% of the country by an average of 3.1°C (5.6°F). Coldest annual temperatures in the Upper Midwest, Alaska, the Northern Rockies and Plains, and the Northeast and Ohio Valley were projected to warm the most. 

Plant hardiness zones have shifted northward in much of the United States. Credit: Climate Central Longer Seasons, Looming Threats

The results match what staff at Pine Hollow and Mount Auburn Cemetery in Cambridge, Mass., have seen. At the cemetery (which is also a botanical garden), staff have begun to test whether plants that traditionally couldn’t survive cold Massachusetts winters can now thrive. For example, staff there have begun testing crepe myrtles and paperbush, two flowering shrubs that have survived recent winters.

Staff at the Mount Auburn Cemetery in Cambridge, Mass., have tested various plants’ tolerances for warming winters, including this crepe myrtle. Credit: Mount Auburn Cemetery/Jessica Bussman

In Minnesota, plant hardiness zones have shifted by about half a zone since 1951–1980.

Laura Irish-Hanson, an educator and horticulturist at the University of Minnesota, tells students and local gardeners to pay attention to the hardiness map when shopping for perennials and to consider planting species more adapted to warmer climates. “Don’t just look at things that, 200-300 years ago, were native to Minnesota,” she said. “Try things that, historically, maybe are native to Iowa, or Illinois, or parts of Wisconsin that are warmer.”

Mount Auburn is also taking the long view. “The effects of a changing climate on plants and plant communities will be significant and, unfortunately, without precedent,” said Ronnit Bendavid-Val, vice president of horticulture and landscape at Mount Auburn Cemetery, in an email. “We can make informed guesses about a certain plant’s resiliency and toughness based on what is known about its adaptability to extremes in the habitats where its species evolved over millennia. However, horticulturally speaking, ‘plant hardiness’ and fitness can be a vexing subject.”

Anchorage, Alaska, is among the cities that have experienced the largest increase in average annual coldest temperatures, according to the Climate Central report, jumping from −29.8°C (−21.6°F) during 1951–1980 to −24.8°C (−12.6°F) during 1995–2024. 

At the Alaska Botanical Garden in Anchorage, hardiness zone changes aren’t the sole climate consequence affecting plants. Will Criner has been gardening there for 12 years as the garden and facilities manager. In that time, he’s noticed the growing season lengthen and, in turn, the time between the first and last frosts dwindle. “We’re definitely seeing a season extension,” he said. 

“We can be so frustrated, but then [we should] think of it as an opportunity to try something else, to do something new with that space, and not try to fight with the environment.”

While warming temperatures could expand growing ranges for some specialty, high-value crops like oranges, almonds, and kiwis, they could also expand the ranges of pests. In Alaska, for instance, warmer winters have made it easier for the spruce beetle, a native insect capable of decimating entire tree stands, to thrive, Criner said. And Plummer expects that the spotted lanternfly, an invasive species that threatens fruit and hardwood trees in particular, will become a problem in Albany as its range expands northward. 

Warmer temperatures may also make it easier for invasive plant species to establish themselves because they would be able to spread their seeds earlier in the year. Non-native species planted intentionally in gardens may more easily grow out of control, too.

Such non-native species could outcompete other garden plants for water, sunlight, and nutrients, forcing gardeners to change their planting strategies. “I could imagine, as we get longer seasons, that some of these [non-native] plants would have to be removed from our database and deaccessioned” for other plants to thrive, Criner said.

Planting for Precipitation

As the climate warms, gardeners and horticulturists across the country have begun to think about how to better protect their plots. 

In the Midwest, gardeners increasingly face oscillating weather conditions—extreme drought and extreme flooding—that can damage and drown plants. That makes gardening even more of a challenge, Irish-Hanson said. For areas facing intensifying rainstorms, water-loving plants can help mitigate damage to a garden, she said, but they must be planted in low-lying spots to receive adequate water.

These bald cypresses, historically adapted to humid climates of the southeastern United States, have thrived at Pine Hollow Arboretum in Albany, N.Y., for years. The tree to the left, toppled in a March 2024 ice and wind storm, was a white pine, a species indigenous to the region. Credit: Dave Plummer

Plummer, who grew up in Albany, said he’s seen less snow and more ice and wind storms than when he was a child. Those storms can damage plants—a March 2024 ice and wind storm at Pine Hollow Arboretum felled multiple trees, which harmed other specimens. Moving forward, the facility may begin planting species more suited to a warmer climate.

Irish-Hanson recommends gardeners adapt their mindset along with their planting decisions. “Even if we do everything perfectly right and choose the right plant for our environment, it can still die,” she said. “We can be so frustrated, but then [we should] think of it as an opportunity to try something else, to do something new with that space, and not try to fight with the environment.”

Criner has similar advice: “[We should] try to be mindful of the plant choices we make and how plants interact with the surrounding environment, not just if they look pretty or not.”

—Grace van Deelen (@gvd.bsky.social), Staff Writer

Citation: van Deelen, G. (2025), As climate changes, so do gardens across the United States, Eos, 106, https://doi.org/10.1029/2025EO250203. Published on 28 May 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Water Density Shifts Can Drive Rapid Changes in AMOC Strength

EOS - Wed, 05/28/2025 - 13:43
Source: Geophysical Research Letters

In the Atlantic Ocean, a system of currents carries vast amounts of warm, salty surface water northward. As this water reaches higher latitudes and becomes colder, it sinks and joins a deep, southward return flow. This cycle, known as the Atlantic Meridional Overturning Circulation (AMOC), plays an important role in Earth’s climate as it redistributes heat, nutrients, and carbon through the ocean.

Although scientists know that the strength of the AMOC—meaning how much water it transports—can vary over time and across regions, it has been unclear how changes in AMOC strength at high northern latitudes may or may not be linked to changes farther south.

Petit et al. applied high-resolution climate modeling to uncover connections between AMOC variability at the midlatitude of 45°N and the current’s behavior at higher subpolar latitudes. High-latitude AMOC observations used in the modeling were captured by the Overturning in the Subpolar North Atlantic Program (OSNAP) instrument array, a network of moorings and submersibles deployed across the Labrador Sea between Greenland and Scotland.

The researchers discovered that subpolar AMOC strength, as captured by OSNAP data, does not affect midlatitude AMOC strength. However, they did find that the density of the subpolar AMOC water beginning its journey back southward affected subsequent midlatitude AMOC strength.

Changes in the water’s density at high latitudes appear to be driven by changes in atmospheric pressure that affect wind stress and buoyancy at the sea surface. The team’s analysis indicates that within a time span of 1 year, these subpolar density changes propagate southward along the far western side of the North Atlantic, creating a steeper density gradient at midlatitudes and, ultimately, affecting AMOC strength there.

The findings suggest that OSNAP density measurements could be used to monitor midlatitude AMOC strength. The study’s results could also help inform the design of future ocean-observing systems to deepen understanding of the ocean’s role in Earth’s climate, according to the researchers. (Geophysical Research Letters, https://doi.org/10.1029/2025GL115171, 2025)

—Sarah Stanley, Science Writer

Citation: Stanley, S. (2025), Water density shifts can drive rapid changes in AMOC strength, Eos, 106, https://doi.org/10.1029/2025EO250202. Published on 28 May 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Ion-beam plasma interaction in ion fast ignition nuclear fusion scheme: A systematic study of the hot-spot properties and gains

Physical Review E (Plasma physics) - Wed, 05/28/2025 - 10:00

Author(s): P. Rodríguez-Beltrán, J. M. Gil, R. Rodríguez, and G. Espinosa-Vivas

Ion fast ignition by laser-driven ion beams is an interesting approach within the inertial confinement fusion scheme to achieve nuclear fusion. In the ion fast ignition, once the precompression of the target is finished, a sphere of fully ionized deuterium-tritium (DT) is obtained. In this work, we …


[Phys. Rev. E 111, 055206] Published Wed May 28, 2025

The 28 May 2025 update on the landslide threatening Blatten in Switzerland

EOS - Wed, 05/28/2025 - 05:41

The Landslide Blog is written by Dave Petley, who is widely recognized as a world leader in the study and management of landslides.

Over the last 24 hours there have been further developments in the situation on the slopes above Blatten in Switzerland, with attention continuing to focus primarily on the Birch Glacier.

Yesterday evening (27 May 2025), the largest collapse to date occurred at the front of the glacier – as a reminder, this is currently moving at about 10 metres per day as a result of the loading, estimated at 9 millions tonnes, from the rockslide debris. The toe of the glacier abuts a steep slope, so these movements render it inevitable that collapses will occur.

There is a wonderful set of drone footage of the situation that has been posted to Youtube by Pomona Media:-

This still, from the Pomona Media video, captures the situation beautifully:-

The current situation on the Birch Glacier at Blatten. Note the rockslide in the background, the huge volume of debris on the ice at the bottom of this slope, the ice of the glacier itself and the steep lower slope down which collapses are occurring. Still from a drone video posted to Youtube by Pomona Media.

The active rock slope is very clearly visible in the background, with some dust from ongoing collapses. The huge volume of debris sitting on the glacier is evident in the middle of the image, with the ice of the mobile glacier in the foreground, above the steep lower slope.

The start of the video, which captures a small collapse, also shows the heavy fracturing in the ice:-

The current situation on the Birch Glacier at Blatten, showing the heavy fracturing in the ice of the Birch Glacier. Still from a drone video posted to Youtube by Pomona Media.

RTS has a nice article reviewing the situation. This includes a video that captures one of the major collapses of the front of the glacier – it is rather spectacular.

There are probably three central scenarios at this point (to be clear, this is my interpretation, not that of the team on-site), although of course reality is rather more messy that this in general:-

  1. A further major collapse from the Kleine Nesthorn mobilises the debris on the glacier, and the glacier itself, to generate a major flow. This is probably the worst case scenario, but the likelihood looks to be lower than it was a week ago.
  2. The glacier itself collapses, creating a rock and ice avalanche, which cascades down the slope. This would be a major event, but would have the advantage of removing the hazard. There would be a risk to some of the houses in Blatten.
  3. There are continued smaller (although not trivial) collapses of the front of the glacier. This could continue for some time until a new equilibrium is reached. This is the scenario that leads to the lowest probability of damage, but it is also means that the risk to the village lasts longer.

I have no means to assess the likelihood of each of the above (and there will be other scenarios in play), but for me (based purely on experience) the most likely at this point is scenario 3.

At the time of writing, it is beautiful morning at Blatten, so the webcam is capturing good images.

As always, it is easy to fixate on the natural processes occurring above Blatten, but this is a very human story too. The population of the village is displaced indefinitely, with the possibility of losing their houses to the disaster. Fortunately, domestic property insurance in Switzerland includes a natural perils pool, so losses to a landslide are likely to be covered (this would not be the case in the UK). This will be of little comfort right now.

But, secondly, the expert team monitoring the slope will also be under immense pressure. They will be getting little sleep at the moment. They are under intense scrutiny, but are also working with many unknowns. No matter how good their data is, it will not be sufficient to accurately anticipate what is going to happen next.

Return to The Landslide Blog homepage Text © 2023. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

An experiment on earthquake size distribution estimations reveals unexpected large epistemic uncertainty across methods

Geophysical Journal International - Wed, 05/28/2025 - 00:00
AbstractThe earthquake size distribution is well described by the Gutenberg Richter Law, controlled by the b-value parameter. In recent decades, a great variety of methods for estimating the b-value have been proposed by the scientific community, despite the simplicity of this relationship. All these methods underlie the different views of individual modelers and, therefore, often generate inconsistent results. In this study, we perform a seismological experiment in which we compare different, commonly adopted, methodologies, to estimate the completeness magnitude and the b-value, for seismicity in Central Italy. The inter-method differences are on average equal to 0.4 and 0.3, for Mc and b, respectively, but reach much larger values, especially during more intense seismic activity. This shows that epistemic uncertainty in the b-value plays a more crucial role than intra-method uncertainties, opening new perspectives in the interpretation of discrepant, single studies.

Predicting underwater landslides before they strike

Phys.org: Earth science - Tue, 05/27/2025 - 20:51
Below ocean wind farms, oil rigs and other offshore installations are mammoth networks of underwater structures, including pipelines, anchors, risers and cables, that are essential to harnessing the energy source. But much like terrestrial structures, these subsea constructions are also vulnerable to natural events, like submarine landslides, that can hamper the productivity of installations below the sea.

Robotic floats quantify sinking carbon in the Southern Ocean

Phys.org: Earth science - Tue, 05/27/2025 - 17:00
Marine life plays a pivotal role in Earth's carbon cycle. Phytoplankton at the base of the aquatic food web take up carbon dioxide from the atmosphere, convert it to organic carbon, and move it around as they become food for other organisms. Much of this carbon eventually returns to the atmosphere, but some ends up sequestered in the deep ocean via a process called carbon export.

Scientists develop AI model to enhance seasonal Arctic sea ice prediction

Phys.org: Earth science - Tue, 05/27/2025 - 16:24
Predicting the extent of Arctic sea ice in September has significant implications for climate change and shipping in the Arctic. However, seasonal forecasts for September sea ice often encounter a challenge known as the "spring predictability barrier."

Rising soil nitrous acid emissions driven by climate change and fertilization accelerate global ozone pollution: Study

Phys.org: Earth science - Tue, 05/27/2025 - 14:04
Ozone pollution is a global environmental concern that not only threatens human health and crop production, but also worsens global warming. While the formation of ozone is often attributed to anthropogenic pollutants, soil emissions are revealed to be another important source.

Earth is heading for 2.7°C warming this century—we may avoid the worst climate scenarios, but the outlook is dire

Phys.org: Earth science - Tue, 05/27/2025 - 13:44
Is climate action a lost cause? The United States is withdrawing from the Paris Agreement for the second time, while heat records over land and sea have toppled and extreme weather events have multiplied.

Home water-use app improves water conservation

Phys.org: Earth science - Tue, 05/27/2025 - 13:42
A UC Riverside-led study has found that a smartphone app that tracks household water use and alerts users to leaks or excessive consumption offers a promising tool for helping California water agencies meet state-mandated conservation goals.

Preocupaciones sobre el litio, el agua y el clima en los dos desiertos más altos de la Tierra

EOS - Tue, 05/27/2025 - 13:17

This is an authorized translation of an Eos article. Esta es una traducción al español autorizada de un artículo de Eos.

La integración de energía renovable en redes eléctricas a las escalas necesarias para mitigar las crecientes concentraciones de gases de efecto invernadero en la atmósfera y el calentamiento global requiere un almacenamiento confiable, y en grandes cantidades. Esto se debe a la variabilidad del viento y la radiación solar incidente, que suministran la mayor parte de esta energía. Las cada vez más avanzadas baterías son el medio predilecto para lograr este almacenamiento.

Entra el litio, cuyo peso ligero, alto potencial electroquímico y el alto cociente de carga a peso lo hacen deseable para su uso en baterías para todo, desde aparatos electrónicos hasta vehículos y redes eléctricas. La demanda de este tipo de baterías ha impulsado un crecimiento acelerado de la producción mundial de litio: se estima que en 2023 se produjeron 180,000 toneladas, en comparación con unas 35,000 en la década anterior.

Sin embargo, la comunidad hidrológica ha prestado poca atención a muchas interrogantes científicas relacionadas al agua en la MLL y la CQ.

El litio se extrae principalmente de las rocas del mineral espodumena, por ejemplo, en Australia, y de la salmuera de salares en regiones como la “Media Luna de Litio” (MLL) en Sudamérica y la Cuenca de Qaidam (CQ) en China. En estas dos zonas, tanto los residentes locales como la prensa, las agencias gubernamentales y las organizaciones no gubernamentales están prestando cada vez más atención a los problemas hídricos y ambientales relacionados con la extracción de salmuera, y las tensiones con las empresas mineras son cada vez más públicas.

Sin embargo, la comunidad hidrológica ha prestado poca atención a muchas interrogantes científicas relacionadas al agua en la MLL y la CQ. Estas preguntas involucran la conectividad natural y el transporte de los recursos hídricos regionales, y cómo el clima y las operaciones mineras afectan su cantidad y calidad. Hidrólogos, hidrometeorólogos e hidrogeólogos deberían trabajar para responder a estas preguntas y ofrecer una visión más integral de cómo se puede lograr una extracción de salmuera más sostenible mediante tecnologías y métodos de estudio consolidados, esto consultando con residentes, gobiernos e industrias de extracción de minerales.

Litio de una media luna y un cuenco

La MLL y la CQ, que respectivamente son la segunda y la primera mesetas más grandes del mundo, son cuencas endorreicas áridas, lo que significa que están hidrológicamente desconectadas del océano. Existen numerosos lagos salados en ambas regiones, con superficies que varían de 1 a 10,000 kilómetros cuadrados en la MLL y de menos de 1 a más de 600 kilómetros cuadrados en la CQ. Los lagos obtienen agua dulce del flujo fluvial proveniente de los glaciares, la nieve y la lluvia en las montañas adyacentes, así como del agua subterránea alimentada por el flujo de ríos y la precipitación. La principal vía de salida del agua de estas cuencas es la evapotranspiración, que con el tiempo concentra las sales minerales en depósitos en el fondo de la cuenca, lo que posibilita la extracción de salmuera.

Las fuentes de litio provenientes de salmueras en la región fronteriza entre Bolivia, Argentina y Chile, en la meseta andina (Figura 1, izquierda), la denominada Media Luna de Litio (un área más pequeña dentro de la MLL se conoce comúnmente como el Triángulo del Litio), representan aproximadamente el 53 % de las reservas mundiales conocidas de litio [Steinmetz y Salvi, 2021]. Esta región también produce aproximadamente un tercio de los compuestos de litio a nivel mundial.

China, por su parte, posee alrededor del 6.5 % de las reservas conocidas de litio y contribuyó con cerca del 18 % de la producción mundial de compuestos de litio en 2023. Varias operaciones de extracción de salmuera en China se llevan a cabo en la cuenca del Qaidam, en la provincia de Qinghai, en la meseta tibetana septentrional (Figura 1, derecha). En 2023, el 21.2 % de la producción total de carbonato de litio de China provino de la cuenca del Qaidam [Oficina de Estadísticas de Qinghai, 2023].

Fig. 1. Los contornos rojos indican la ubicación geográfica de la Media Luna de Litio (MLL, izquierda) en la meseta andina de Sudamérica y la Cuenca Qaidam de China (CQ, derecha) en la meseta tibetana septentrional. La MLL tiene elevaciones de 2200 a 6800 metros y una superficie de 327 000 kilómetros cuadrados; la CQ tiene elevaciones de 2600 a 6800 metros y una superficie de 279 000 kilómetros cuadrados. Los contornos de ambas cuencas provienen de HydroBASINS. Haga clic en la imagen para ampliarla. Crédito: datos cartográficos de Google Earth, SIO, NOAA, Marina de los EE. UU., NGA, GEBCO, Landsat, Copernicus, IBCAO

La CQ produce no solo compuestos de litio, sino también potasa, combustibles fósiles, cloruro de sodio y otros recursos que contribuyen significativamente a la industria y la agricultura de China. Por ejemplo, la potasa producida en la QB en 2023 representó el 69.4 % de la producción total de este recurso en China y el 6.5 % de la producción mundial (cifras calculadas con base en datos de la Oficina de Estadística de Qinghai [2023] y del Servicio Geológico de Estados Unidos).

Aumento de demanda en medio de condiciones cambiantes

Las regiones de la MLL y la CQ reciben cantidades similares de precipitación, con promedios anuales totales de aproximadamente 170 a 180 milímetros, que caen principalmente en sus respectivos veranos. Sin embargo, mientras que la precipitación disminuye ligeramente en MLL, esta aumenta gradualmente en CQ (Figura 2). La MLL también es más cálida y húmeda en promedio y presenta una evapotranspiración potencial mucho mayor que CQ; sin embargo, las temperaturas en ambas regiones están aumentando.

Se predice que el almacenamiento de agua disminuirá debido a que el calentamiento podría reducir los glaciares y la nieve en ambas regiones, y estos cambios podrían aumentar la variabilidad de los caudales fluviales y alterar los regímenes de caudal.

Se proyecta que estas tendencias continuarán en las próximas décadas, y los cambios climáticos tendrán consecuencias para los recursos hídricos. Se predice que el almacenamiento de agua disminuirá debido a que el calentamiento podría reducir los glaciares y la nieve en ambas regiones, y estos cambios podrían aumentar la variabilidad de los caudales fluviales y alterar los regímenes de caudal. Junto con el calentamiento, la reducción en precipitación exacerbará las condiciones de sequía en la MLL. En la CQ, el aumento de la precipitación y el derretimiento de los glaciares y la nieve probablemente causarán más eventos extremos compuestos similares a las inundaciones catastróficas que ocurrieron en la región en 2010 [Ma y Xu, 2011] y 2022. Estas inundaciones dañaron campos de salmuera, presas e infraestructura y causaron pérdidas económicas superiores a los 10 millones de dólares.

Mientras tanto, la industria de la extracción de salmuera ha experimentado un auge en las últimas décadas en ambas regiones. Se prevé que la explotación de recursos, especialmente de litio, se intensifique en el futuro próximo, siguiendo la tendencia reciente.

Para extraer los materiales deseados, los mineros perforan pozos en los salares y bombean salmuera rica en minerales a la superficie. La salmuera se deja evaporar durante unos 12 a 18 meses, durante los cuales se evapora aproximadamente el 90 % del agua original. El material restante se recolecta y procesa para obtener productos minerales comercializables. Este proceso de bombeo de salmuera y aumento de la evaporación en la superficie altera los ciclos hidrológicos locales naturales. Además, se necesita agua dulce durante toda la etapa de procesamiento para purificar los compuestos químicos.

Fig. 2. Las gráficas muestran la precipitación anual y la precipitación promedio mensual (Pre), la evapotranspiración potencial (PET), la presión de vapor (VAP) y la temperatura del aire (T) en la MLL y la CQ de 1960 a 2022. Las estrellas indican la significancia de las tendencias con un valor de p < 0.05. Los datos provienen de la Unidad de Investigación Climática TS, versión 4.07. Haga clic en la imagen para verla más grande.

En los últimos años, se han reportado casos que vinculan la extracción de salmuera con la generación de residuos, la contaminación del agua y el suelo, la alteración del paisaje y la degradación de la flora y la fauna, así como con importantes problemas relacionados con la cantidad y la calidad del agua. También se han reportado conflictos y tensiones entre la población local y las empresas mineras en la meseta tibetana y la MLL, relacionados con la reducción de los recursos hídricos y la contaminación de las aguas subterráneas y los caudales fluviales [Marconi et al., 2022; Giglio, 2021].

Los estudios también documentan los efectos en los ecosistemas. Por ejemplo, la reducción de algunas poblaciones de flamencos andinos se correlaciona con un nivel freático más bajo [Gutiérrez et al., 2022], y las poblaciones de cianobacterias que alimentan a los flamencos andinos están disminuyendo en lagunas cercanas al Salar de Atacama en Chile debido al consumo de agua y la contaminación causada por la extracción de litio [Gutiérrez et al., 2018].

La cantidad de agua utilizada en las operaciones de extracción de salmuera puede variar según el clima, las concentraciones minerales y la tecnología empleada, pero para la MLL, los investigadores han estimado que se necesitan entre 100,000 y 800,000 litros de agua por tonelada métrica de litio extraído [Vera et al., 2023]. No existe una estimación similar para la CQ, pero la próspera industria minera en la zona también está aumentando la demanda de agua.

En el sur de la QC, el uso industrial de agua aumentó de 90 millones de metros cúbicos en 2000 a 383 millones de metros cúbicos en 2019, lo que representa el 10.2% y el 40.8%, respectivamente, del consumo total de agua en la región en esos años [Han et al., 2023]. En 2016, se construyeron instalaciones de desviación de agua y canales para transportar agua desde subcuencas cercanas a campos de salmuera y ciudades para satisfacer la creciente demanda. En diciembre de 2023, tres fábricas importantes de extracción de salmuera en la CQ incumplieron sus cuotas de uso de agua al bombear ilegalmente agua subterránea y extraer agua de humedales y lagos protegidos para satisfacer sus demandas de producción. Estas acciones fueron criticadas públicamente por el Ministerio de Ecología y Medio Ambiente de China, que ordenó a las fábricas que dejaran de bombear agua ilegalmente.

Esclareciendo la hidrología en torno a la minería de salmuera

Tenemos un conocimiento limitado del papel de los salares en estos ciclos o de cómo la expansión de las operaciones de extracción de salmuera para satisfacer la demanda de litio podría alterar este papel.

Al igual que el océano y otras reservas de agua debajo, sobre y por encima de la superficie terrestre, los salares del mundo tienen un rol en sus ciclos hidrológicos regionales. Sin embargo, tenemos un conocimiento limitado del papel de los salares en estos ciclos o de cómo la expansión de las operaciones de extracción de salmuera para satisfacer la demanda de litio podría alterar este papel.

Los hidrólogos enfrentan varias preguntas generales: ¿Cómo y en qué medida afecta la extracción de salmuera a los diversos reservorios y flujos (p. ej., recarga de aguas subterráneas, desvío de caudales, evaporación) del ciclo hidrológico regional? ¿Cómo llega la escorrentía superficial de las montañas circundantes a los depósitos de agua subterránea? ¿Cómo se conectan estos depósitos bajo las cuencas desérticas donde se forman los lagos de salmuera? ¿Cuáles son las edades y la composición química de estas aguas subterráneas? Abordar estas preguntas permitirá conocer mejor la cantidad y la calidad de los recursos hídricos disponibles, lo que a su vez ayudará a los responsables de la toma de decisiones a asignar el agua de forma justa a los diferentes sectores y a monitorear y proteger la calidad del agua durante la extracción de salmuera.

Estanques de evaporación en el lecho seco del lago West Taijinai’er en la CQ observados en septiembre de 2023. Crédito: Lan Cuo

Además, debido a que la MLL y la CQ están experimentando un calentamiento similar pero diferentes tendencias de precipitación, y sus respectivos ciclos hídricos regionales pueden, por lo tanto, verse afectados de manera diferente por el cambio climático, los hidrólogos deben explorar preguntas relacionadas con estas diferencias. ¿Cómo responden los glaciares y la nieve en estas regiones al calentamiento emparejado con más (o menos) precipitación? ¿Y cómo responden los regímenes de caudal (que comprenden las magnitudes, los tiempos, las frecuencias y las duraciones de los caudales altos y bajos) a los cambios en los glaciares, la nieve y la precipitación? ¿Qué mecanismos controlan los eventos extremos como sequías e inundaciones en estas regiones? Responder a estas preguntas esclarecerá cómo el cambio climático está afectando los escasos recursos hídricos en la MLL y la CQ y puede informar los esfuerzos de mitigación para conservar estos recursos.

Investigar todas estas interrogantes requiere diversos enfoques. Se necesitan mediciones in situ de precipitación, evaporación, glaciares y nieve, así como de aguas subterráneas, lagos, ríos y suelos, para determinar la disponibilidad y calidad de los recursos hídricos en ubicaciones específicas de la MLL y la CQ. Los análisis con isótopos estables y trazadores pueden ayudar a determinar las fuentes y la edad del agua sobre y bajo la superficie terrestre. Las observaciones satelitales de cómo cambian las variables del paisaje, como la desertificación, la superficie lacustre, los glaciares y la nieve, la humedad del suelo y la vegetación, ayudarán a rastrear los efectos del cambio climático y la extracción de salmuera en los recursos hídricos y los ecosistemas. También necesitaremos estudios de modelización hidrogeológica para comprender la hidrología superficial, el almacenamiento y el movimiento de las aguas subterráneas, y cómo se ven afectados por la escorrentía superficial en la MLL y la CQ (se requieren mediciones in situ para validar los estudios satelitales y de modelización).

Además, se debe fomentar la colaboración entre investigadores de ambas regiones para permitir comparaciones detalladas y esclarecer las diferencias y los puntos en común en los problemas hídricos de cada una. Estas colaboraciones también facilitarían el intercambio de mejores prácticas de investigación y posibles soluciones políticas con respecto a la extracción de salmuera y los recursos hídricos.

Involucrar a todas las partes interesadas para obtener mejores resultados

La extracción de salmuera será sostenible sólo cuando las operaciones, desde su inicio hasta su fin, utilicen el agua de manera eficiente, minimicen el daño al medio ambiente, los ecosistemas y las comunidades, y compensen los daños.

Los recursos hídricos en la MLL y la CQ ya se encuentran bajo tensión debido a su ubicación en medio de los desiertos más altos del mundo y a las cambiantes condiciones climáticas. La extracción de salmuera para abastecer de litio y otras materias primas a la transición a energías renovables podría agravar esta tensión. Esta extracción sólo será sostenible cuando las operaciones, desde su inicio hasta su fin, utilicen el agua de manera eficiente; minimicen los daños al medio ambiente, los ecosistemas y las comunidades; y compensen los daños cuando estos ocurran.

La combinación de múltiples enfoques científicos para estudiar la hidrología regional generará un conocimiento holístico e integral de la cantidad y la calidad del agua en estas áreas. Sin embargo, para apoyar la sostenibilidad de la extracción de salmuera y la gestión de los recursos hídricos en la MLL y la CQ, los científicos deben compartir la información y las respuestas obtenidas de estos enfoques con las agencias gubernamentales pertinentes, las empresas mineras y las comunidades locales a través de informes de investigación, conferencias y asambleas públicas que reúnan a estos grupos.

La participación de los miembros de la comunidad contribuirá especialmente a revelar no solo los efectos en la hidrología y los ecosistemas, sino también el costo humano de las actividades mineras y el cambio climático. Y una mejor comunicación entre estos grupos ayudará a los legisladores y reguladores a crear y hacer cumplir normas para regir las operaciones mineras responsables, al tiempo que mitigan los impactos negativos y satisfacen las necesidades de la comunidad.

Referencias

Giglio, E. (2021), Extractivism and its socio-environmental impact in South America: Overview of the “lithium triangle,” Am. Crítica5(1), 47–53, https://doi.org/10.13125/americacritica/4926.

Gutiérrez, J. S., J. G. Navedo, and A. Soriano-Redondo (2018), Chilean Atacama site imperilled by lithium mining, Nature557, 492, https://doi.org/10.1038/d41586-018-05233-7.

Gutiérrez, J. S., et al. (2022), Climate change and lithium mining influence flamingo abundance in the Lithium Triangle, Proc. R. Soc. B289, 20212388, https://doi.org/10.1098/rspb.2021.2388.

Han, J., et al. (2023), The potential analysis of rain-flood resources in the Golmud river catchment based on climate change and human interventions, Qaidam basin [in Chinese], J. Salt Lake Res.31(4), 30–38.

Ma, S., and L. Xu (2011), 2010 Golmud River flooding analysis, Qinghai Sci. Technol.1, 38–41.

Marconi, P., F. Arengo, and A. Clark (2022), The arid Andean plateau waterscapes and the lithium triangle: Flamingos as flagships for conservation of high-altitude wetlands under pressure from mining development, Wetlands Ecol. Manage.30, 827–852, https://doi.org/10.1007/s11273-022-09872-6.

Qinghai Bureau of Statistics (2023), Statistics of national economy and social development in 2023 [in Chinese], m.yicai.com/news/102000260.html.

Steinmetz, R. L. L., and S. Salvi (2021), Brine grades in Andean salars: When basin size matters—A review of the Lithium Triangle, Earth Sci. Rev.217, 103615, https://doi.org/10.1016/j.earscirev.2021.103615.

Vera, M. L., et al. (2023), Environmental impact of direct lithium extraction from brines, Nat. Rev. Earth Environ.4, 149–165, https://doi.org/10.1038/s43017-022-00387-5.

Datos de autora

Lan Cuo (lancuo@itpcas.ac.cn), State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Pekín; también en la University of Chinese Academy of Sciences, Pekín

This translation by Nelmary Rodriguez Sepulveda was made possible by a partnership with Planeteando y GeoLatinas. Esta traducción fue posible gracias a una asociación con Planeteando and GeoLatinas.

This article does not represent the opinion of AGU, Eos, or any of its affiliates. It is solely the opinion of the author(s). Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

Robotic Floats Quantify Sinking Carbon in the Southern Ocean

EOS - Tue, 05/27/2025 - 13:17
Source: Global Biogeochemical Cycles

Marine life plays a pivotal role in Earth’s carbon cycle. Phytoplankton at the base of the aquatic food web take up carbon dioxide from the atmosphere, convert it to organic carbon, and move it around as they become food for other organisms. Much of this carbon eventually returns to the atmosphere, but some ends up sequestered in the deep ocean via a process called carbon export.

Quantifying carbon export to the deep ocean is critical for understanding changes in Earth’s climate. Measurements in the Southern Ocean, a key region for global ocean circulation and a substantial carbon sink, are especially important but have been sparse, particularly in areas with sea ice that are difficult to access.

To address that gap, Liniger et al. used data from 212 autonomous, floating instruments known as Biogeochemical-Argo (BGC-Argo) floats to estimate carbon export across the Southern Ocean basin. These floats roam the upper 2,000 meters of the ocean, can travel beneath sea ice, and are equipped with sensors that measure physical and biogeochemical properties of seawater.

Though prior studies have used BGC-Argo data to estimate Southern Ocean carbon export, most focused on narrow regions or timescales and excluded sea ice–covered areas. The new analysis uses data collected between 2014 and 2022 by floats scattered across the entire ocean basin, including under sea ice. After developing a novel method to calculate carbon export using the floats’ measurements of sinking particulate organic carbon and dissolved oxygen change over time, the researchers estimated that about 2.69 billion tons of carbon sink to the deep sea each year in the Southern Ocean.

Their findings also suggest that carbon export varies significantly in different parts of the Southern Ocean, with only about 8% occurring in seasonally ice-covered areas. But the researchers say more investigation is needed to clarify the role of the highly active ecosystems in the sea ice zone, especially as climate change drives shifts in sea ice dynamics. (Global Biogeochemical Cycles, https://doi.org/10.1029/2024GB008193, 2025)

—Sarah Stanley, Science Writer

Citation: Stanley, S. (2025), Robotic floats quantify sinking carbon in the Southern Ocean, Eos, 106, https://doi.org/10.1029/2025EO250193. Published on 27 May 2025. Text © 2025. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

The 26/27 May 2025 update on the landslide threatening Blatten in Switzerland

EOS - Tue, 05/27/2025 - 05:53
Smaller rockfalls have reduced the risk of a major rock slope collapse above Blatten, but attention has shifted to the Birch Glacier, which is now moving at 10 metres per day.

The Landslide Blog is written by Dave Petley, who is widely recognised as a world leader in the study and management of landslides.

Over the last few days, the situation above Blatten in Switzerland has developed considerably. The good news is that the rock slope failure has continued to occur as a series of smaller rockfalls, rather than a single very large collapse. This has limited the runout distance of the debris, sparing, at least so far, Blatten itself.

The webcam has been difficult to use due to the cloudy weather, but the view this morning (27 May 2025) shows that the slope has evolved considerably:-

Webcam image from 27 May 2025 showing the deforming slope at Blatten in Switzerland. Image from Bergfex.

Throughout this crisis, Melaine Le Roy has provided excellent updates via his Bluesky account. Embedding Bluesky posts on Wordpress is very hit and miss, but hopefully this will work. If not, please follow the links.

Yesterday, Melaine posted an update provided by Alban Brigger in the regular press conference about the Blatten event:-

#Blatten Press conference Alban Brigger, -glacier front velocity is 2.5-3 m/day. ‘We do not expect an exponential acceleration, as we feared before.’-the amount of debris deposited on the glacier is 3.5 Mm3 = 9 M t. Up to 80 m thick!1/

Permafrost thaw: Gradual change or climate tipping point?

Phys.org: Earth science - Mon, 05/26/2025 - 18:15
The Arctic is warming almost four times faster than the rest of the planet. High temperatures are already causing the permanently frozen ground, known as permafrost, to thaw. The carbon contained in this soil is then released into the atmosphere as carbon dioxide or methane, further exacerbating global warming.

Climate change slashes wind power potential, new forecasts show

Phys.org: Earth science - Mon, 05/26/2025 - 16:24
A new study published in the journal Climatic Change highlights significant shifts in wind patterns across the Middle East due to climate change, with critical implications for the region's wind energy potential. The research, led by Melissa Latt from the Karlsruhe Institute of Technology (KIT), Germany, and Dr. Assaf Hochman from the Fredy and Nadine Herrmann Institute of Earth Sciences at the Hebrew University of Jerusalem, utilizes high-resolution climate modeling to project changes in summer wind fields up to the year 2070.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer