Feed aggregator

Correcting high-frequency losses of reactive nitrogen flux measurements

Correcting high-frequency losses of reactive nitrogen flux measurements
Pascal Wintjen, Christof Ammann, Frederik Schrader, and Christian Brümmer
Atmos. Meas. Tech., 13, 2923–2948, https://doi.org/10.5194/amt-13-2923-2020, 2020
With recent technological advances it is now possible to measure the exchange of trace gases between the land surface and the atmosphere. When using the so-called eddy-covariance method, certain corrections need to be applied to account for attenuation in the flux signal. These losses were found to be setup- and site-specific and can be up to 38 % for reactive nitrogen fluxes. We evaluated five different methods and recommend using an empirical version with locally measured cospectra.

A novel injection technique: using a field-based quantum cascade laser for the analysis of gas samples derived from static chambers

Atmos.Meas.Tech. discussions - Thu, 06/04/2020 - 19:07
A novel injection technique: using a field-based quantum cascade laser for the analysis of gas samples derived from static chambers
Anne R. Wecking, Vanessa M. Cave, Lìyĭn L. Liáng, Aaron M. Wall, Jiafa Luo, David I. Campbell, and Louis A. Schipper
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-197,2020
Preprint under review for AMT (discussion: open, 0 comments)
Nitrous oxide (N

A novel injection technique: using a field-based quantum cascade laser for the analysis of gas samples derived from static chambers

A novel injection technique: using a field-based quantum cascade laser for the analysis of gas samples derived from static chambers
Anne R. Wecking, Vanessa M. Cave, Lìyĭn L. Liáng, Aaron M. Wall, Jiafa Luo, David I. Campbell, and Louis A. Schipper
Atmos. Meas. Tech. Discuss., https//doi.org/10.5194/amt-2020-197,2020
Preprint under review for AMT (discussion: open, 0 comments)
Nitrous oxide (N

Hydrologists show environmental damage from fog reduction is observable from outer space

GeoSpace: Earth & Space Science - Thu, 06/04/2020 - 18:11

It’s now possible to use satellite data to measure the threat of climate change to ecological systems that depend on water from fog, according to a newly-published study.

The paper, in the AGU journal Geophysical Research Letters, presents the first clear evidence that the relationship between fog levels and vegetation status is measurable using remote sensing. The discovery opens up the potential to easily and rapidly assess fog’s impact on ecological health across large land masses — as compared to painstaking ground-level observation.

“It’s never been shown before that you can observe the effect of fog on vegetation from outer space,” said Lixin Wang, an associate professor in the School of Science at Indiana University-Purdue University Indianapolis (IUPUI), who is the senior author on the study. “The ability to use the satellite data for this purpose is a major technological advance.”

Two satellite images show vegetation change from fog in two areas of the Namib desert. The left image shows the areas during periods of lower fog; the right image shows the areas during periods of higher fog. Greener areas inside the squares indicate vegetation greening. Image courtesy of Lixin Wang, Indiana University.

The need to understand the relationship between fog and vegetation is urgent since environmental change is reducing fog levels across the globe. The shift most strongly affects regions that depend upon fog as a major source of water, including the redwood forests in California, the Atacama desert in Chile and the Namib desert in Namibia, with the latter two currently recognized as World Heritage sites under the United Nations due to their ecological rarity.

“The loss of fog endangers plant and insect species in these regions, many of which don’t exist elsewhere in the world,” said Na Qiao, a visiting student at IUPUI, who is the study’s first author. “The impact of fog loss on vegetation is already very clear. If we can couple this data with large-scale impact assessments based on satellite data, it could potentially influence environmental protection policies related to these regions.”

Fog readings were taken at two weather stations near the Gobabeb Namib Research Institute in the Namib desert of Namibia. Photo courtesy of Lixin Wang, Indiana University.

The study is based on optical and microwave satellite data, along with information on fog levels from weather stations at two locations operated by the Gobabeb Namib Research Institute in the Namib desert. The satellite data was obtained from NASA and the U.S. Geological Survey. The fog readings were taken between 2015 and 2017.

At least once a year, Wang and student researchers, including both graduate and undergraduate students from IUPUI, travel to the remote facility — a two-hour drive on a dirt road from the nearest city — to conduct field research.

The study found a significant correlation between fog levels and vegetation status near both weather stations during the entire time of the study. Among other findings, the optical data from the site near the research facility revealed obvious signs of plant greening following fog, and up to 15 percent higher measures during periods of fog versus periods without fog.

Similar patterns were seen at the second site, located near a local rock formation. The microwave data also found significant correlation between fog and plant growth near the research facility, and up to 60 percent higher measures during periods of fog versus periods without fog.

Lixin Wang, left, and a colleague conduct water research in the Namib desert. Photo courtesy of Lixin Wang, Indiana University

The study’s conclusions are based on three methods of remotely measuring vegetation: two based on optical data, which is sensitive to the vibrance of greens in plants, and a third based on microwave data, which is sensitive to overall plant mass, including the amount of water in stems and leaves. Although observable by machines, the changes in vegetation color are faint enough to go undetected by the human eye.

Next, the team will build upon their current work to measure the effect of fog on vegetation over longer periods of time, which will assist with future predictions. Wang also aims to study the relationship in other regions, including the redwood forests in California.

“We didn’t even know you could use satellite data to measure the impact of fog on vegetation until this study,” he said. “If we can extend the period under investigation, that will show an even more robust relationship. If we have 10 years of data, for example, we can make future predictions about the strength of this relationship and how this relationship has been changing over time due to climate change.”

Additional authors were Wenzhe Jiao, a Ph.D. student at IUPUI, who made significant contributions to the satellite data processing, as well as Changping Huang and Lifu Zhang of the Chinese Academy of Science and Maggs-Kölling and Eugene Marais of the Gobabeb Namib Research Institute. Qiao is also a student at the Chinese Academy of Science.

This post was originally published on the Indiana University website.

The post Hydrologists show environmental damage from fog reduction is observable from outer space appeared first on GeoSpace.

Resolving the size of ice-nucleating particles with a balloon deployable aerosol sampler: the SHARK

Atmos.Meas.Tech. discussions - Wed, 06/03/2020 - 17:06
Resolving the size of ice-nucleating particles with a balloon deployable aerosol sampler: the SHARK
Grace C. E. Porter, Sebastien N. F. Sikora, Michael P. Adams, Ulrike Proske, Alexander D. Harrison, Mark D. Tarn, Ian M. Brooks, and Benjamin J. Murray
Atmos. Meas. Tech., 13, 2905–2921, https://doi.org/10.5194/amt-13-2905-2020, 2020
Ice-nucleating particles affect cloud development, lifetime, and radiative properties. Hence it is important to know the abundance of INPs throughout the atmosphere. Here we present the development and application of a radio-controlled payload capable of collecting size-resolved aerosol from a tethered balloon for the primary purpose of offline INP analysis. Test data are presented from four locations: southern Finland, northern England, Svalbard, and southern England.

Resolving the size of ice-nucleating particles with a balloon deployable aerosol sampler: the SHARK

Resolving the size of ice-nucleating particles with a balloon deployable aerosol sampler: the SHARK
Grace C. E. Porter, Sebastien N. F. Sikora, Michael P. Adams, Ulrike Proske, Alexander D. Harrison, Mark D. Tarn, Ian M. Brooks, and Benjamin J. Murray
Atmos. Meas. Tech., 13, 2905–2921, https://doi.org/10.5194/amt-13-2905-2020, 2020
Ice-nucleating particles affect cloud development, lifetime, and radiative properties. Hence it is important to know the abundance of INPs throughout the atmosphere. Here we present the development and application of a radio-controlled payload capable of collecting size-resolved aerosol from a tethered balloon for the primary purpose of offline INP analysis. Test data are presented from four locations: southern Finland, northern England, Svalbard, and southern England.

XCO2 estimates from the OCO-2 measurements using a neural network approach

Atmos.Meas.Tech. discussions - Tue, 06/02/2020 - 18:56
XCO2 estimates from the OCO-2 measurements using a neural network approach
Leslie David, Francois-Marie Bréon, and Frédéric Chevallier
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-177,2020
Preprint under review for AMT (discussion: open, 0 comments)
This paper shows that a Neural Network approach can be used to process spaceborne observations from the OCO-2 satellite and retrieve both the surface pressure and the atmospheric CO

XCO2 estimates from the OCO-2 measurements using a neural network approach

XCO2 estimates from the OCO-2 measurements using a neural network approach
Leslie David, Francois-Marie Bréon, and Frédéric Chevallier
Atmos. Meas. Tech. Discuss., https//doi.org/10.5194/amt-2020-177,2020
Preprint under review for AMT (discussion: open, 0 comments)
This paper shows that a Neural Network approach can be used to process spaceborne observations from the OCO-2 satellite and retrieve both the surface pressure and the atmospheric CO

Assessment of global total column water vapor sounding using a spaceborne differential absorption radar

Atmos.Meas.Tech. discussions - Tue, 06/02/2020 - 17:06
Assessment of global total column water vapor sounding using a spaceborne differential absorption radar
Luis Millán, Richard Roy, and Matthew Lebsock
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-97,2020
Preprint under review for AMT (discussion: open, 0 comments)
This paper describes the feasibility of using a differential absorption radar technique for the remote sensing of total column water vapor from a spaceborne platform.

Assessment of global total column water vapor sounding using a spaceborne differential absorption radar

Assessment of global total column water vapor sounding using a spaceborne differential absorption radar
Luis Millán, Richard Roy, and Matthew Lebsock
Atmos. Meas. Tech. Discuss., https//doi.org/10.5194/amt-2020-97,2020
Preprint under review for AMT (discussion: open, 0 comments)
This paper describes the feasibility of using a differential absorption radar technique for the remote sensing of total column water vapor from a spaceborne platform.

Development of a new correction algorithm applicable to any filter-based absorption photometer

Atmos.Meas.Tech. discussions - Fri, 05/29/2020 - 18:56
Development of a new correction algorithm applicable to any filter-based absorption photometer
Hanyang Li, Gavin R. McMeeking, and Andrew A. May
Atmos. Meas. Tech., 13, 2865–2886, https://doi.org/10.5194/amt-13-2865-2020, 2020
We present a new correction algorithm that addresses biases in measurements of aerosol light absorption by filter-based photometers, incorporating the transmission of light through the filter and some aerosol optical properties. It was developed using biomass burning aerosols and tested using rural ambient aerosols. This new algorithm is applicable to any filter-based photometer, resulting in good agreement between different colocated instruments in both the laboratory and the field.

Methodology for deriving the telescope focus function and its uncertainty for a heterodyne pulsed Doppler lidar

Atmos.Meas.Tech. discussions - Fri, 05/29/2020 - 18:56
Methodology for deriving the telescope focus function and its uncertainty for a heterodyne pulsed Doppler lidar
Pyry Pentikäinen, Ewan James O'Connor, Antti Juhani Manninen, and Pablo Ortiz-Amezcua
Atmos. Meas. Tech., 13, 2849–2863, https://doi.org/10.5194/amt-13-2849-2020, 2020
We provide a methodology for obtaining a function describing how the Doppler lidar telescope configuration impacts the measurements. Together with the function itself, we also provide the uncertainties in the function, which propagate through to provide uncertainties in the geophysical quantities obtained from the measurements. The method can be used to determine how stable the instrument is over time and also identify if changes have been made in the instrument setup.

The CopterSonde: an insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research

Atmos.Meas.Tech. discussions - Fri, 05/29/2020 - 18:56
The CopterSonde: an insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research
Antonio R. Segales, Brian R. Greene, Tyler M. Bell, William Doyle, Joshua J. Martin, Elizabeth A. Pillar-Little, and Phillip B. Chilson
Atmos. Meas. Tech., 13, 2833–2848, https://doi.org/10.5194/amt-13-2833-2020, 2020
The CopterSonde is an unmanned aircraft system designed with the purpose of sampling thermodynamic and kinematic parameters of the lower Earth's atmosphere, with a focus on vertical profiles in the planetary boundary layer. By incorporating adaptive sampling techniques and optimizing the sensor placement, our study shows that CopterSonde can provide similar information as a radiosonde, but with more control of its sampling location at much higher temporal and spatial resolution.

Understanding cryogenic frost point hygrometer measurements after contamination by mixed-phase clouds

Atmos.Meas.Tech. discussions - Fri, 05/29/2020 - 18:56
Understanding cryogenic frost point hygrometer measurements after contamination by mixed-phase clouds
Teresa Jorge, Simone Brunamonti, Yann Poltera, Frank G. Wienhold, Bei P. Luo, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Sing, Susanne Körner, Ruud Dirksen, Manish Naja, Suvarna Fadnavis, and Thomas Peter
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-176,2020
Preprint under review for AMT (discussion: open, 0 comments)
Balloon-borne frost point hygrometers are crucial for the monitoring of water vapour in the upper troposphere and lower stratosphere. We found that when traversing a mixed-phase cloud with big supercooled droplets, the intake tube of the instrument collects on its inner surface a high percentage of these droplets. The newly formed ice layer will sublimate at higher levels and contaminate the measurement. The balloon and instrument package are also investigated as source of the contamination.

Development of a new correction algorithm applicable to any filter-based absorption photometer

Development of a new correction algorithm applicable to any filter-based absorption photometer
Hanyang Li, Gavin R. McMeeking, and Andrew A. May
Atmos. Meas. Tech., 13, 2865–2886, https://doi.org/10.5194/amt-13-2865-2020, 2020
We present a new correction algorithm that addresses biases in measurements of aerosol light absorption by filter-based photometers, incorporating the transmission of light through the filter and some aerosol optical properties. It was developed using biomass burning aerosols and tested using rural ambient aerosols. This new algorithm is applicable to any filter-based photometer, resulting in good agreement between different colocated instruments in both the laboratory and the field.

Methodology for deriving the telescope focus function and its uncertainty for a heterodyne pulsed Doppler lidar

Methodology for deriving the telescope focus function and its uncertainty for a heterodyne pulsed Doppler lidar
Pyry Pentikäinen, Ewan James O'Connor, Antti Juhani Manninen, and Pablo Ortiz-Amezcua
Atmos. Meas. Tech., 13, 2849–2863, https://doi.org/10.5194/amt-13-2849-2020, 2020
We provide a methodology for obtaining a function describing how the Doppler lidar telescope configuration impacts the measurements. Together with the function itself, we also provide the uncertainties in the function, which propagate through to provide uncertainties in the geophysical quantities obtained from the measurements. The method can be used to determine how stable the instrument is over time and also identify if changes have been made in the instrument setup.

The CopterSonde: an insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research

The CopterSonde: an insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research
Antonio R. Segales, Brian R. Greene, Tyler M. Bell, William Doyle, Joshua J. Martin, Elizabeth A. Pillar-Little, and Phillip B. Chilson
Atmos. Meas. Tech., 13, 2833–2848, https://doi.org/10.5194/amt-13-2833-2020, 2020
The CopterSonde is an unmanned aircraft system designed with the purpose of sampling thermodynamic and kinematic parameters of the lower Earth's atmosphere, with a focus on vertical profiles in the planetary boundary layer. By incorporating adaptive sampling techniques and optimizing the sensor placement, our study shows that CopterSonde can provide similar information as a radiosonde, but with more control of its sampling location at much higher temporal and spatial resolution.

Understanding cryogenic frost point hygrometer measurements after contamination by mixed-phase clouds

Understanding cryogenic frost point hygrometer measurements after contamination by mixed-phase clouds
Teresa Jorge, Simone Brunamonti, Yann Poltera, Frank G. Wienhold, Bei P. Luo, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Sing, Susanne Körner, Ruud Dirksen, Manish Naja, Suvarna Fadnavis, and Thomas Peter
Atmos. Meas. Tech. Discuss., https//doi.org/10.5194/amt-2020-176,2020
Preprint under review for AMT (discussion: open, 0 comments)
Balloon-borne frost point hygrometers are crucial for the monitoring of water vapour in the upper troposphere and lower stratosphere. We found that when traversing a mixed-phase cloud with big supercooled droplets, the intake tube of the instrument collects on its inner surface a high percentage of these droplets. The newly formed ice layer will sublimate at higher levels and contaminate the measurement. The balloon and instrument package are also investigated as source of the contamination.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer