Feed aggregator

SegCloud: a novel cloud image segmentation model using a deep convolutional neural network for ground-based all-sky-view camera observation

SegCloud: a novel cloud image segmentation model using a deep convolutional neural network for ground-based all-sky-view camera observation
Wanyi Xie, Dong Liu, Ming Yang, Shaoqing Chen, Benge Wang, Zhenzhu Wang, Yingwei Xia, Yong Liu, Yiren Wang, and Chaofang Zhang
Atmos. Meas. Tech., 13, 1953–1961, https://doi.org/10.5194/amt-13-1953-2020, 2020

Cloud detection and cloud properties have substantial applications in weather forecast, signal attenuation analysis, and other cloud-related fields. Cloud image segmentation is the fundamental and important step in deriving cloud cover. However, traditional segmentation methods rely on low-level visual features of clouds and often fail to achieve satisfactory performance. Deep convolutional neural networks (CNNs) can extract high-level feature information of objects and have achieved remarkable success in many image segmentation fields. On this basis, a novel deep CNN model named SegCloud is proposed and applied for accurate cloud segmentation based on ground-based observation. Architecturally, SegCloud possesses a symmetric encoder–decoder structure. The encoder network combines low-level cloud features to form high-level, low-resolution cloud feature maps, whereas the decoder network restores the obtained high-level cloud feature maps to the same resolution of input images. The Softmax classifier finally achieves pixel-wise classification and outputs segmentation results. SegCloud has powerful cloud discrimination capability and can automatically segment whole-sky images obtained by a ground-based all-sky-view camera. The performance of SegCloud is validated by extensive experiments, which show that SegCloud is effective and accurate for ground-based cloud segmentation and achieves better results than traditional methods do. The accuracy and practicability of SegCloud are further proven by applying it to cloud cover estimation.

Flow-induced errors in airborne in situ measurements of aerosols and clouds

Flow-induced errors in airborne in situ measurements of aerosols and clouds
Antonio Spanu, Maximilian Dollner, Josef Gasteiger, T. Paul Bui, and Bernadett Weinzierl
Atmos. Meas. Tech., 13, 1963–1987, https://doi.org/10.5194/amt-13-1963-2020, 2020
This study investigates how the airflow around wing-mounted instruments on fast-flying aircraft affects aerosol and cloud measurements. It combines airborne data with numerical simulations and shows that particle speed, particle concentration, and shape of water droplets are modified by the airflow. The proposed correction strategy for optical particle counters and optical array probes considers airflow effects and significantly reduces errors of derived ambient aerosol and cloud properties.

Flow-induced errors in airborne in situ measurements of aerosols and clouds

Atmos.Meas.Tech. discussions - Fri, 04/17/2020 - 18:43
Flow-induced errors in airborne in situ measurements of aerosols and clouds
Antonio Spanu, Maximilian Dollner, Josef Gasteiger, T. Paul Bui, and Bernadett Weinzierl
Atmos. Meas. Tech., 13, 1963–1987, https://doi.org/10.5194/amt-13-1963-2020, 2020
This study investigates how the airflow around wing-mounted instruments on fast-flying aircraft affects aerosol and cloud measurements. It combines airborne data with numerical simulations and shows that particle speed, particle concentration, and shape of water droplets are modified by the airflow. The proposed correction strategy for optical particle counters and optical array probes considers airflow effects and significantly reduces errors of derived ambient aerosol and cloud properties.

Issues related to the retrieval of stratospheric-aerosol particle size information based on optical measurements

Atmos.Meas.Tech. discussions - Thu, 04/16/2020 - 19:02
Issues related to the retrieval of stratospheric-aerosol particle size information based on optical measurements
Christian von Savigny and Christoph G. Hoffmann
Atmos. Meas. Tech., 13, 1909–1920, https://doi.org/10.5194/amt-13-1909-2020, 2020
Stratospheric sulfate aerosols increase the Earth's planetary albedo and can lead to significant surface cooling, for example in the aftermath of volcanic eruptions. Their particle size distribution, important for physical and chemical effects of these aerosols, is still not fully understood. The present paper proposes an explanation for systematic differences in aerosol particle size retrieved from measurements made in different measurement geometries and reported in earlier studies.

A new lidar inversion method using a surface reference target applied to the backscattering coefficient and lidar ratio retrievals of a fog-oil plume at short range

Atmos.Meas.Tech. discussions - Thu, 04/16/2020 - 19:02
A new lidar inversion method using a surface reference target applied to the backscattering coefficient and lidar ratio retrievals of a fog-oil plume at short range
Florian Gaudfrin, Olivier Pujol, Romain Ceolato, Guillaume Huss, and Nicolas Riviere
Atmos. Meas. Tech., 13, 1921–1935, https://doi.org/10.5194/amt-13-1921-2020, 2020
A new elastic lidar inversion equation is presented. It is based on the backscattering signal from a surface reference target rather than that from a volumetric layer of reference as is usually done. The method presented can be used in the case of airborne elastic lidar measurements or when the lidar–target line is horizontal. Also, a new algorithm is described to retrieve the lidar ratio and the backscattering coefficient of an aerosol plume without any a priori assumptions about the plume.

Issues related to the retrieval of stratospheric-aerosol particle size information based on optical measurements

Issues related to the retrieval of stratospheric-aerosol particle size information based on optical measurements
Christian von Savigny and Christoph G. Hoffmann
Atmos. Meas. Tech., 13, 1909–1920, https://doi.org/10.5194/amt-13-1909-2020, 2020
Stratospheric sulfate aerosols increase the Earth's planetary albedo and can lead to significant surface cooling, for example in the aftermath of volcanic eruptions. Their particle size distribution, important for physical and chemical effects of these aerosols, is still not fully understood. The present paper proposes an explanation for systematic differences in aerosol particle size retrieved from measurements made in different measurement geometries and reported in earlier studies.

A new lidar inversion method using a surface reference target applied to the backscattering coefficient and lidar ratio retrievals of a fog-oil plume at short range

A new lidar inversion method using a surface reference target applied to the backscattering coefficient and lidar ratio retrievals of a fog-oil plume at short range
Florian Gaudfrin, Olivier Pujol, Romain Ceolato, Guillaume Huss, and Nicolas Riviere
Atmos. Meas. Tech., 13, 1921–1935, https://doi.org/10.5194/amt-13-1921-2020, 2020
A new elastic lidar inversion equation is presented. It is based on the backscattering signal from a surface reference target rather than that from a volumetric layer of reference as is usually done. The method presented can be used in the case of airborne elastic lidar measurements or when the lidar–target line is horizontal. Also, a new algorithm is described to retrieve the lidar ratio and the backscattering coefficient of an aerosol plume without any a priori assumptions about the plume.

Dust devils may roam hydrocarbon dunes on Saturn’s moon Titan

GeoSpace: Earth & Space Science - Thu, 04/16/2020 - 15:01
Smoggy, with a chance of dust devils: conditions at the surface of Saturn’s moon Titan may spawn convective whirlwinds

By Liza Lester

Hazy, orange Titan, Saturn’s largest moon, passes in front of the planet and its rings in this true-color image from Casssini.
Credit: NASA

Meteorological conditions on Saturn’s large moon Titan, the strange, distant world that may be the most Earth-like in the solar system, appear conducive to the formation of dust devils, according to new research in AGU’s journal Geophysical Research Letters.

If true, these dry whirlwinds may be primary movers of dust on the surface of Titan, as they are on Mars.

The Cassini spacecraft, which toured Saturn’s system from 2004 to 2017, observed dunes in the moon’s equatorial region covering as much as 30% of the surface and a large dust storm.

The dust on Titan’s dunes is believed to originate as hydrocarbon aerosols raining out of the moon’s atmosphere, according to Brian Jackson, a planetary scientist at Boise State University in Idaho and the lead author of the new study. It likely has a plasticky texture unlike the more familiar grit found on Earth or Mars.

Rare, big dust storms look impressive, but dust devils loft more total dust into the atmosphere, even on Earth, where winds are more influential than on Mars or Titan.

“Winds at the surface of Titan are usually very weak. Unless there is a big storm rolling through, there’s probably not that much wind, and so dust devils may be one of the main dust transport mechanisms on Titan—if they exist,” Jackson said.

Lines of dunes contour the Shangri-La Sand Sea on Titan, Saturn’s largest moon. Credit: NASA/JPL-Caltech/ASI/Université Paris-Diderot

Dust devils have not been observed on Titan. The authors of the new study predicted the possible presence of dust devils by applying meteorological models to data acquired from the moon’s surface during the brief visit of Cassini’s Huygens probe in 2005.

Dusty mystery

Dust devils form in dry, calm conditions when sunlight warms the ground and near-surface air. Rising warm air creates vortices made visible by sand and dust caught up in the whirl. Dust devils share some physical properties with tornadoes but are always dry and do not grow as large and destructive. But scientists don’t entirely understand how dust devils work.

“When we plug the numbers in for how much dust the dust devil ought to lift based on the wind speeds we see, they seem to be able to lift more dust than we would expect. There may be some other mechanism which is helping them pull this dust—or the equations are just wrong,” Jackson said.

Jackson and his students have chased dust devils across southeastern Oregon’s Alvord Desert with small airborne drones carrying meteorological instruments, in an ongoing effort to get a look inside.



Exceptionally dry conditions on the Red Planet beget many dust devils during Martian summers, when they can grow immense, reaching 8 kilometers (5 miles) high. Mars’ atmosphere is so thin even 200-mile-an-hour winds only cause a gently buffeting. This makes the dust-lifting power of dust devils important to the global movement of dust on Mars.

“We can watch dust devils skitter across the surface of Mars and see what their internal structure is like, but that doesn’t tell us how much dust they are lifting. Mars’ atmosphere is really, really dusty and dust plays an important role in the climate. Dust devils are probably, if not the dominant mechanism, one of the most important mechanisms for lofting the dust,” Jackson said.

Dust devils whirl across the surface of Mars in images captured by Spirit rover in 2005. Credit: NASA

If they exist on Titan, dust devils may be similarly important, although winds at the surface of Titan are typically gentle for the opposite reason: Titan’s atmosphere is one and a half times the density of Earth’s, but the moon has only one seventh of Earth’s gravity. This makes Titan’s atmosphere hard to get moving, according to Jackson.

“It’s just this enormous, puffy atmosphere. When you’ve got that much air it’s hard to get it churning. So you just don’t usually get big winds on the surface of Titan so far as we know,” said Jackson.

Like Earth’s, Titan’s atmosphere is mostly nitrogen, but it also includes influential amounts of ethane and methane, the major components of natural gas. Titan is the only world in the solar system other than Earth where scientists have observed evidence of flowing rivers and liquid surface lakes, but scientists believe these Earth-like features on the cold, distant moon are not water but liquid hydrocarbons.

Confirmation of the new study’s dust devil prediction may have to wait on the arrival of NASA’s Dragonfly mission in 2034. Jackson says buffeting from dust devil encounters would be unlikely to trouble the large octocopter as it explores the moon’s surface.

—Liza Lester is a senior media relations specialist at AGU.

The post Dust devils may roam hydrocarbon dunes on Saturn’s moon Titan appeared first on GeoSpace.

Simultaneous detection of ozone and nitrogen dioxide by oxygen anion chemical ionization mass spectrometry: a fast-time-response sensor suitable for eddy covariance measurements

Atmos.Meas.Tech. discussions - Wed, 04/15/2020 - 19:02
Simultaneous detection of ozone and nitrogen dioxide by oxygen anion chemical ionization mass spectrometry: a fast-time-response sensor suitable for eddy covariance measurements
Gordon A. Novak, Michael P. Vermeuel, and Timothy H. Bertram
Atmos. Meas. Tech., 13, 1887–1907, https://doi.org/10.5194/amt-13-1887-2020, 2020
We present the development and successful field deployment of a new chemical ionization mass spectrometry method capable of fast and high-sensitivity measurements of ozone and nitrogen dioxide in the atmosphere. The sensitivity, precision, and time resolution of the instrument were demonstrated to be sufficient for making deposition flux measurements of ozone from a coastal ocean field site. We propose this instrument will also be well suited for sampling from mobile platforms.

The quantification of NOx and SO2 point source emission flux errors of mobile DOAS on the basis of the Gaussian dispersion model: A simulation study

Atmos.Meas.Tech. discussions - Wed, 04/15/2020 - 19:02
The quantification of NOx and SO2 point source emission flux errors of mobile DOAS on the basis of the Gaussian dispersion model: A simulation study
Yeyuan Huang, Ang Li, Thomas Wagner, Yang Wang, Zhaokun Hu, Pinhua Xie, Jin Xu, Hongmei Ren, Xiaoyi Fang, and Bing Dang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-81,2020
Preprint under review for AMT (discussion: open, 0 comments)
Mobile DOAS has become an important tool for the quantification of emission sources. In this study, we focused on the error budget of mobile DOAS measurements from point sources based on the model simulations, and we also offered recommendations for the optimum settings of such measurements. From the results, we also discovered a missing error source(undetectable flux) and clarified the [NOx]/[NO2] ratio correction effect of flux measurement.

Simultaneous detection of ozone and nitrogen dioxide by oxygen anion chemical ionization mass spectrometry: a fast-time-response sensor suitable for eddy covariance measurements

Simultaneous detection of ozone and nitrogen dioxide by oxygen anion chemical ionization mass spectrometry: a fast-time-response sensor suitable for eddy covariance measurements
Gordon A. Novak, Michael P. Vermeuel, and Timothy H. Bertram
Atmos. Meas. Tech., 13, 1887–1907, https://doi.org/10.5194/amt-13-1887-2020, 2020
We present the development and successful field deployment of a new chemical ionization mass spectrometry method capable of fast and high-sensitivity measurements of ozone and nitrogen dioxide in the atmosphere. The sensitivity, precision, and time resolution of the instrument were demonstrated to be sufficient for making deposition flux measurements of ozone from a coastal ocean field site. We propose this instrument will also be well suited for sampling from mobile platforms.

The quantification of NOx and SO2 point source emission flux errors of mobile DOAS on the basis of the Gaussian dispersion model: A simulation study

The quantification of NOx and SO2 point source emission flux errors of mobile DOAS on the basis of the Gaussian dispersion model: A simulation study
Yeyuan Huang, Ang Li, Thomas Wagner, Yang Wang, Zhaokun Hu, Pinhua Xie, Jin Xu, Hongmei Ren, Xiaoyi Fang, and Bing Dang
Atmos. Meas. Tech. Discuss., https//doi.org/10.5194/amt-2020-81,2020
Preprint under review for AMT (discussion: open, 0 comments)
Mobile DOAS has become an important tool for the quantification of emission sources. In this study, we focused on the error budget of mobile DOAS measurements from point sources based on the model simulations, and we also offered recommendations for the optimum settings of such measurements. From the results, we also discovered a missing error source(undetectable flux) and clarified the [NOx]/[NO2] ratio correction effect of flux measurement.

Evaluation of equivalent black carbon source apportionment using observations from Switzerland between 2008 and 2018

Atmos.Meas.Tech. discussions - Tue, 04/14/2020 - 19:02
Evaluation of equivalent black carbon source apportionment using observations from Switzerland between 2008 and 2018
Stuart K. Grange, Hanspeter Lötscher, Andrea Fischer, Lukas Emmenegger, and Christoph Hueglin
Atmos. Meas. Tech., 13, 1867–1885, https://doi.org/10.5194/amt-13-1867-2020, 2020
Black carbon (BC) is an important atmospheric pollutant and can be monitored by instruments called aethalometers. A pragmatic data processing technique called the aethalometer model can be used to apportion aethalometer observations into traffic and woodburning components. We present an exploratory data analysis evaluating the aethalometer model and use the outputs for BC trend analysis across Switzerland. The aethalometer model's robustness and utility for such analyses is discussed.

Intra-annual variations of spectrally resolved gravity wave activity in the UMLT region

Atmos.Meas.Tech. discussions - Tue, 04/14/2020 - 19:02
Intra-annual variations of spectrally resolved gravity wave activity in the UMLT region
René Sedlak, Alexandra Zuhr, Carsten Schmidt, Sabine Wüst, Michael Bittner, Goderdzi G. Didebulidze, and Colin Price
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-14,2020
Preprint under review for AMT (discussion: open, 0 comments)
Gravity wave (GW) activity in the UMLT in the period range 6–480 min is calculated by applying a wavelet analysis to nocturnal temperature time series derived from OH* airglow spectrometers. We analyse measurements from eight different locations at different latitudes. GW activity shows strong period dependence. We find hardly any seasonal variability for periods below 60 min and a semi-annual cycle for periods longer than 60 min that evolves into an annual cycle around a period of 200 min.

Leveraging spatial textures, through machine learning, to identify aerosol and distinct cloud types from multispectral observations

Atmos.Meas.Tech. discussions - Tue, 04/14/2020 - 19:02
Leveraging spatial textures, through machine learning, to identify aerosol and distinct cloud types from multispectral observations
Willem J. Marais, Robert E. Holz, Jeffrey S. Reid, and Rebecca M. Willett
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-74,2020
Preprint under review for AMT (discussion: open, 0 comments)
Space agencies use moderate resolution satellite imagery to study how smoke, dust, pollution (aerosols) and cloud types impacts the Earth's climate; these space agencies include NASA, ESA, China Meteorological Administration, etc. We demonstrate in this paper that an algorithm with convolutional neural networks can greatly enhance the automated detection of aerosols and cloud types from satellite imagery. Our algorithm is an improvement compared current aerosol and cloud detection algorithms.

Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10 nm aerosol nanoparticles

Atmos.Meas.Tech. discussions - Tue, 04/14/2020 - 19:02
Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10 nm aerosol nanoparticles
Ting Lei, Nan Ma, Juan Hong, Thomas Tuch, Xin Wang, Zhibin Wang, Mira Pöhlker, Maofa Ge, Weigang Wang, Eugene Mikhailov, Thorsten Hoffmann, Ulrich Pöschl, Hang Su, Alfred Wiedensohler, and Yafang Cheng
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-110,2020
Preprint under review for AMT (discussion: open, 0 comments)
We present a newly designed and self-assembled nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. We further introduce the comprehensive methods for system calibration and performance of the system.

Intercomparison and Evaluation of Ground- and Satellite-Based Stratospheric Ozone and Temperature profiles above Observatoire Haute Provence during the Lidar Validation NDACC Experiment (LAVANDE)

Atmos.Meas.Tech. discussions - Tue, 04/14/2020 - 19:02
Intercomparison and Evaluation of Ground- and Satellite-Based Stratospheric Ozone and Temperature profiles above Observatoire Haute Provence during the Lidar Validation NDACC Experiment (LAVANDE)
Robin Wing, Wolfgang Steinbrecht, Sophie Godin-Beekmann, Thomas J. McGee, John T. Sullivan, Grant Sumnicht, Gerard Ancellet, Alain Hauchecorne, Sergey Khaykin, and Philippe Keckhut
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-9,2020
Preprint under review for AMT (discussion: open, 0 comments)
A lidar intercomparison campaign was conducted over a period of 28 nights at L'Observatoire de Haute Provence (OHP) in 2017 and 2018. The objective is to validate the ozone and temperature profiles at OHP to ensure the quality of the data submitted to the NDACC database remains high. A mobile reference lidar operated by NASA was transported to OHP and operated concurrently with the French lidars. Agreement for ozone was better than 5 % between 20 and 40 km and temperatures were equal within 3 K.

Evaluation of equivalent black carbon source apportionment using observations from Switzerland between 2008 and 2018

Evaluation of equivalent black carbon source apportionment using observations from Switzerland between 2008 and 2018
Stuart K. Grange, Hanspeter Lötscher, Andrea Fischer, Lukas Emmenegger, and Christoph Hueglin
Atmos. Meas. Tech., 13, 1867–1885, https://doi.org/10.5194/amt-13-1867-2020, 2020
Black carbon (BC) is an important atmospheric pollutant and can be monitored by instruments called aethalometers. A pragmatic data processing technique called the aethalometer model can be used to apportion aethalometer observations into traffic and woodburning components. We present an exploratory data analysis evaluating the aethalometer model and use the outputs for BC trend analysis across Switzerland. The aethalometer model's robustness and utility for such analyses is discussed.

Intra-annual variations of spectrally resolved gravity wave activity in the UMLT region

Intra-annual variations of spectrally resolved gravity wave activity in the UMLT region
René Sedlak, Alexandra Zuhr, Carsten Schmidt, Sabine Wüst, Michael Bittner, Goderdzi G. Didebulidze, and Colin Price
Atmos. Meas. Tech. Discuss., https//doi.org/10.5194/amt-2020-14,2020
Preprint under review for AMT (discussion: open, 0 comments)
Gravity wave (GW) activity in the UMLT in the period range 6–480 min is calculated by applying a wavelet analysis to nocturnal temperature time series derived from OH* airglow spectrometers. We analyse measurements from eight different locations at different latitudes. GW activity shows strong period dependence. We find hardly any seasonal variability for periods below 60 min and a semi-annual cycle for periods longer than 60 min that evolves into an annual cycle around a period of 200 min.

Leveraging spatial textures, through machine learning, to identify aerosol and distinct cloud types from multispectral observations

Leveraging spatial textures, through machine learning, to identify aerosol and distinct cloud types from multispectral observations
Willem J. Marais, Robert E. Holz, Jeffrey S. Reid, and Rebecca M. Willett
Atmos. Meas. Tech. Discuss., https//doi.org/10.5194/amt-2020-74,2020
Preprint under review for AMT (discussion: open, 0 comments)
Space agencies use moderate resolution satellite imagery to study how smoke, dust, pollution (aerosols) and cloud types impacts the Earth's climate; these space agencies include NASA, ESA, China Meteorological Administration, etc. We demonstrate in this paper that an algorithm with convolutional neural networks can greatly enhance the automated detection of aerosols and cloud types from satellite imagery. Our algorithm is an improvement compared current aerosol and cloud detection algorithms.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer