Abstract
Additional ionospheric information is essential for mitigating errors in single-frequency (SF) Global Navigation Satellite Systems (GNSS) positioning. The increasing number of low-cost dual-frequency (DF) receiver users faces limitations in tracking DF observables compared to traditional geodetic receivers. Consequently, ionospheric correction algorithms (ICAs) are also essential for low-cost DF devices in hybrid-frequency positioning. To evaluate the performance of commonly used ICAs during solar cycle 25, our study presents a global statistical investigation of the contribution of five broadcast ionospheric models (BIMs) and the International GNSS Service (IGS) combined real-time global ionospheric maps (IRTG) to the positioning domain, covering both quiet and perturbed ionospheric conditions. The BIMs investigated include the GPS Klobuchar (GPSK), Galileo NequickG (NEQG), NTCM-GlAzpar (NTCMG), BDS-2 Klobuchar (BDSK), and BeiDou Global Ionospheric delay correction Model (BDGIM). Experimental results from standard point positioning indicate that IRTG demonstrates superior overall accuracy compared to all BIMs, with a mean 3D root mean squared (RMS) of 2.76 m during perturbed period. Specifically, GPSK, NTCMG, NEQG, BDGIM, and BDSK exhibit RMS values of 2.03, 1.67, 1.72, 1.62, and 2.36 m during quiet conditions, and 4.02, 3.17, 2.86, 3.14, and 4.44 m during perturbed conditions, respectively. Among the BIMs, NEQG demonstrates superior performance at middle and high latitudes but exhibits lower accuracy than NTCMG and BDGIM at low latitudes during daytime under quiet conditions. BDGIM performs slightly better than NTCMG at low latitudes but slightly worse at high latitudes. BDSK shows notable improvement for high- and mid-latitude regions since 3 June 2020.
Abstract
This paper presents an alternative approach to improve the achievable beam scan angle of a traditional multi-beam waveguide lens antenna. Due to the focusing mechanism by manipulating the geometrical curvatures of the waveguide lens, the angular scan range is limited in the conventional waveguide lens design using dual-focal points of excitations because the geometrical curvatures of the waveguide lens only provide two design freedoms. To overcome this limitation, a solution of treating the waveguide lens as a transmit array consisting of non-identical elements is proposed so that each element of the antenna array can be well calibrated to improve the maximum scan angular range, where a third focus point of excitation can be created by adding another design freedom from the differentiation between non-identical elements. Each element of this new transmitting array can be well calibrated with the help of a mathematical expression to improve the maximum angular scan range. Numerical simulations show that the proposed antenna architecture exhibits better radiation characteristics than the traditional waveguide lens antenna. Radiation characteristics are studied and compared for both types of lens antennas to validate the design concept. The proposed triple-focal point provides a higher gain than the traditional lens antenna with fewer antenna elements. The gains of the beams at ±10°, ±20°, ±30°, and ±40° are found to be 27.78, 26.94, 26.19, and 24.04 dBi, respectively. From the comparison, it is seen that the variation in gain by the proposed triple-focal array design is more stable than the conventional dual-focal point design.
Abstract
We use MHD simulations to study the time sequence of magnetospheric responses to a synthetic event with a southward interplanetary magnetic field (IMF) turning. The onset of dayside magnetopause reconnection launches a weak rarefaction wave and sunward flow in the equatorial magnetosphere simultaneously with a tailward flow through the polar cap. This convection results in the accumulation of magnetic flux in the tail lobes and thinning of the tail current layer which provides favorable conditions for the onset of nightside reconnection. The onset of nightside reconnection about 40 min later closes the Dungey convection cycle, resulting in a second increase in the sunward flow in the equatorial plane. Variations of the magnetopause standoff distance as well as the size of the polar cap (PC) may indicate the onsets of the dayside and nightside reconnections. We compare the results of two MHD models and discuss their differences.
Abstract
Utilizing magnetic field measurements made by the Iridium satellites and by ground magnetometers in North America we calculate the full ionospheric current system and investigate the substorm current wedge. The current estimates are independent of ionospheric conductance, and are based on estimates of the divergence-free (DF) ionospheric current from ground magnetometers and curl-free (CF) ionospheric currents from Iridium. The DF and CF currents are represented using spherical elementary current systems (SECS), derived using a new inversion scheme that ensures the current systems' spatial scales are consistent. We present 18 substorm events and find a typical substorm current wedge (SCW) in 12 events. Our investigation of these substorms shows that during substorm expansion, equivalent field-aligned currents (EFACs) derived with ground magnetometers are a poor proxy of the actual FAC. We also find that the intensification of the westward electrojet can occur without an intensification of the FACs. We present theoretical investigations that show that the observed deviation between FACs estimated with satellite measurements and ground-based EFACs are consistent with the presence of a strong local enhancement of the ionospheric conductance, similar to the substorm bulge. Such enhancements of the auroral conductance can also change the ionospheric closure of pre-existing FACs such that the ground magnetic field, and in particular the westward electrojet, changes significantly. These results demonstrate that attributing intensification of the westward electrojet to SCW current closure can yield false understanding of the ionospheric and magnetospheric state.
In the wet, muddy places where America's rivers and lands meet the sea, scientists from the Department of Energy's Oak Ridge National Laboratory are unearthing clues to better understand how these vital landscapes are evolving under climate change.
Abstract
Given the important role of Atmospheric River precipitation (ARP) in the global hydrological cycle, accurate representation of ARP is significant. However, general circulation models (GCMs) demonstrate bias in simulating ARP. The target of this study is to quantify the performance of ARP intensity/frequency for CMIP6 simulations, and further to improve ARP estimation of CMIP6 using Cycle-Consistent Generative Adversarial Networks (CycleGAN) with highlighting the more accurate ARP features under the global warming background. The findings of this study are as follows: (a) although ARP intensity/frequency in reserved-optimal CMIP6 overall reproduces the observation, it is still underestimated at the stronger Atmospheric river (AR) scales, particularly for the AR highly active mid-latitude regions. (b) The CycleGAN-based bias correction approach markedly diminishes the bias of the CMIP6 simulations within most of the AR scales among both global and the four AR highly active regions. Moreover, the performance of the ARP in AR highly active regions is significant improvement, which is mainly due to the reduction of the bias at the strongest scale. (c) Relative to reference period (1986–2005), ARP intensity/frequency at the strongest scale increase notably under 3°C warming level, with an average value of 373.3% in intensity and 415.9% in frequency for global and the four key regions before correction, and the value is 451.9% and 492.5% after bias correction. The results illustrate that CycleGAN can effectively improve the ARP simulations of GCMs, and an early warning implies that future strong extreme ARP should potentially surpass the current expected.
Abstract
The Turkana Jet plays a pivotal role in the meteorology of East Africa across timescales, and owes its existence to both large-scale dynamics and the representation of intricate local-scale processes. However, much of our understanding of the jet relies on reanalysis, and these along with climate models that produce important projections do not represent these local-scale processes. We systematically investigate the impact of changing model horizontal and vertical resolution in simulating the Turkana Jet, and associated local and large-scale processes. We perform simulations to coincide with the Radiosonde Investigation For the Turkana Jet (RIFTJet) campaign, enabling direct model-sonde comparisons in unprecedented detail. We find that increasing horizontal model resolution significantly increases the strength of the jet throughout the channel by up to 30%, while vertical resolution changes have little impact. Horizontal resolutions finer than 2.2 km produce a nocturnal jet ∼2 m/s stronger than observed but perform better during the day. The elevated inversion, which is strongly tied to the strength of the jet, is much better represented in resolutions as high as 1.1 km, whereas the global model at resolution O(∼10 km) is unable to produce any nocturnal elevated inversion. Predictions of jet strength are improved at higher resolution, indicating an important role of local process given that models inherit the same large-scale state. Despite further improvements at resolutions finer than 4.4 km, we recommend that 4.4 km is the minimum horizontal resolution required to capture realistic interactions between these processes. Underestimation of the Turkana Jet could cause considerable errors in moisture advection into Africa.
Abstract
Energetic electron precipitation (EEP) during substorms significantly affects ionospheric chemistry and lower-ionosphere (<100 km) conductance. Two mechanisms have been proposed to explain what causes EEP: whistler-mode wave scattering, which dominates at low latitudes (mapping to the inner magnetosphere), and magnetic field-line curvature scattering, which dominates poleward. In this case study, we analyzed a substorm event demonstrating the dominance of curvature scattering. Using ELFIN, POES, and THEMIS observations, we show that 50–1,000 keV EEP was driven by curvature scattering, initiated by an intensification and subsequent earthward motion of the magnetotail current sheet. Using a combination of Swarm, total electron content, and ELFIN measurements, we directly show the location of EEP with energies up to ∼1 MeV, which extended from the plasmapause to the near-Earth plasma sheet (PS). The impact of this strong substorm EEP on ionospheric ionization is also estimated and compared with precipitation of PS (<30 keV) electrons.
Abstract
Surface anticyclones connected to the ridge of an upper-tropospheric Rossby wave are the main dynamical drivers of mid-latitude summer heatwaves. It is, however, unclear to what extent an anomalously low zonal phase speed of the wave in the upper troposphere is necessary for persistent temperature extremes at the surface. Here, we use spectral decomposition to separate fast and slow synoptic-scale waves. A composite analysis of ERA5 reanalysis data reveals that, while in some regions heatwaves become more frequent during episodes of weak or no phase propagation, temperature extremes in other regions are commonly associated with more rapidly eastward propagating Rossby waves. Reflected in the mean heatwave duration as well, this relationship is possibly linked to a longitudinal phase preference of slow and fast waves or a meridional storm track shift. These findings open up new questions about the influence of mid-latitude dynamics on temperature extremes.
SummaryBackazimuthal variations in the shear wave splitting of core-refracted shear waves (SKS, SKKS, and PKS phases, jointly referred to as XKS) at the Black Forest Observatory (BFO, Southwest Germany) indicate small-scale lateral and partly vertical variations of the seismic anisotropy. However, existing anisotropy studies and models for the nearby Upper Rhine Graben (URG) area in the northern Alpine foreland are mostly based on short-term recordings and by this suffer from a limited backazimuthal coverage and averaging over a wide or the whole backazimuth range. To identify and delimit laterally confined anisotropy regimes in this region, we carry out XKS splitting measurements at six neighbouring (semi-)permanent broadband seismological recording stations (inter-station distance 10-80 km). We manually analyse long-term (partly > 20 yr) recordings to achieve a sufficient backazimuthal coverage to resolve complex anisotropy. The splitting parameters (fast polarization direction $\phi $, delay time $\delta t$) are determined in a single- and multi-event analysis. We test structural anisotropy models with one layer with horizontal or tilted symmetry axis and with two layers with horizontal symmetry axes (transverse isotropy). To account for lateral variations around a single recording site, modelling is compared for the whole and for limited backazimuth ranges. Based on this, we provide a 3-D block model with spatial variation of anisotropic properties. Based on delay times > 0.3 s and missing discrepancies between SKS and SKKS phases, which do not support lower mantle anisotropy, the found anisotropy is placed in the lithosphere and asthenosphere. The spatial distribution as well as the lateral and backazimuthal variations of the splitting parameters confirm lateral and partly vertical variations in anisotropy. On the east side of the URG, we suggest two anisotropic layers in the Moldanubian Zone (south) and one anisotropic layer in the Saxothuringian Zone (north). In the Moldanubian Zone, a change of the fast polarization directions is observed between the east and the west side of the URG, indicating different textures. At the boundary between the two terranes, an inclined anisotropy is modelled which may be related with deformation during Variscan subduction. Regarding the observation of numerous null measurements and inconsistent splitting parameters, especially (southwest of BFO) in the southern URG, different hypothesis are tested: scattering of the seismic wavefield due to small-scale lateral heterogeneities, a vertical a-axis due to a vertical mantle flow related to the Kaiserstuhl Volcanic Complex, as well as a different preferred orientation of the olivine crystals (not A-type, but C-type) due to specific ambient conditions (high temperature, water content).
SummaryWe developed a short-period Pn magnitude scale mb(Pn) for earthquakes along the equatorial Mid-Atlantic Ridge. Due to low signal-to-noise ratios, teleseismic body wave magnitude and long-period surface wave magnitude cannot be confidently determined for small earthquakes of mb < 4. Local magnitude scales are also not useful for these events because the oceanic environment does not allow the propagation of crustal phases. However, regional high-frequency Pn waves from these small- to moderate-size (mb 3–6) earthquakes are well recorded in the equatorial Atlantic region and can be used to assign magnitudes. We measured over 2 041 Pn peak amplitudes on vertical records from about 20 stations in northeastern Brazil and 11 stations in western Africa in the distance range of 700–3,700 km. We analyzed data from 189 events from the global centroid moment tensor catalog to tie our mb(Pn) scale to MW so that seismic moments can be readily estimated. Pn arrivals show apparent group velocity between 7.9 km/s at short ranges (∼1,000 km) and up to 9.1 km/s at 3,500 km. The measured peak amplitudes have a frequency between 0.8 and 3 Hz at 1 000–1,800 km, but at greater distances, 1 800–3,700 km, they show a remarkably consistent frequency of about 0.8 Hz. The peak amplitude attenuates at a higher rate at short distances (∼0.65 magnitude units between 700–2,000 km) but attenuates at a lower rate at long distances (∼0.35 magnitude units between 2 000 and 3,700 km). The low rate of amplitude decay with distance and nearly constant frequency content of the peak amplitudes suggest that Pn waves propagate efficiently in the lower part of the upper mantle in the equatorial Atlantic Ocean basins. These are important attributes of oceanic Pn waves that can be used to assign magnitude for small- to moderate-size earthquakes in the equatorial mid-Atlantic region. The estimated station corrections correlate well with upper mantle low-velocity anomalies, especially in Brazil.
SummaryThe Earth's subsurface structure provides critical insights into sustainable resource management and geologic evolution. The airborne electromagnetic (AEM) method is an efficient data acquisition technique and can be used to image the underground resistivity structure with high spatial resolution. However, inversion of the increasingly huge volume of AEM data poses a heavy computational burden. In this study, we develop a hybrid deep learning-based approach by employing the physics-guided neural network (PGNN) which incorporates the governing physical laws into the loss function to solve the AEM inverse problem. The PGNN integrates the strength of data-driven method for representation learning with electromagnetic laws and allows for the underlying physical constraints to be strictly satisfied. We validate the effectiveness of our approach using both synthetic and field datasets. Compared with the classic Gauss-Newton method, our PGNN inversion system shows strong robustness against multiple noise sources and reduces the risk of being trapped in local extrema. Moreover, the PGNN-inverted results are physically more consistent with the AEM observations compared to the purely data-driven approach. Application to the field AEM data from Northern Australia demonstrates that the PGNN-based inversion framework effectively estimates the subsurface electrical properties with considerable lateral continuity and significantly higher efficiency, completing the inversion of more than 2734000 AEM soundings taking only minutes on a common PC. Our proposed PGNN-based method shows great promise for large-scale underground resistivity imaging, and the well-identified subsurface resistivity structure can effectively improve our understanding of resource distributions and geological hazards.
Californians are familiar with landslides that occur around storms, when saturated soil and rock loses its grip and slips from its perch on the substrate. These types of landslides can be triggered by intense rainfall, and incoming storms can be a warning that neighborhoods need to evacuate.
A new study finds a significant impact of the Madden-Julian Oscillation (MJO) and El Niño Southern Oscillation (ENSO) on coral bleaching events in the Great Barrier Reef (GBR).
A clustering-based method for identifying and tracking squall lines
Zhao Shi, Yuxiang Wen, and Jianxin He
Atmos. Meas. Tech., 17, 4121–4135, https://doi.org/10.5194/amt-17-4121-2024, 2024
The squall line is a type of convective system. Squall lines are often associated with damaging weather, so identifying and tracking squall lines plays an important role in early meteorological disaster warnings. A clustering-based method is proposed in this article. It can identify the squall lines within the radar scanning range with an accuracy rate of 95.93 %. It can also provide the three-dimensional structure and movement tracking results for each squall line.
Uncertainties in temperature statistics and fluxes determined by sonic anemometers due to wind-induced vibrations of mounting arms
Zhongming Gao, Heping Liu, Dan Li, Bai Yang, Von Walden, Lei Li, and Ivan Bogoev
Atmos. Meas. Tech., 17, 4109–4120, https://doi.org/10.5194/amt-17-4109-2024, 2024
Using data collected from three levels of a 62 m tower, we found that both the temperature variances and sensible heat flux obtained from sonic anemometers are consistently lower, by a few percent, compared to those from fine-wire thermocouples.
An introduction of Three-Dimensional Precipitation Particles Imager (3D-PPI)
Jiayi Shi, Xichuan Liu, Lei Liu, Liying Liu, and Peng Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-106,2024
Preprint under review for AMT (discussion: open, 0 comments)
A Three-Dimensional Precipitation Particles Imager (3D-PPI) is introduced as a novel instrument for measuring the three-dimensional shape, size, and fall velocity of the precipitation particles. The field experiment of the 3D-PPI was conducted at Tulihe, China, more than 880,000 snowflakes were recorded during a typical snowfall case lasting for 13 hours. It shows a potential application in atmospheric science, polar research, and other fields.
In a revelation that highlights the fragile balance of our planet's atmosphere, scientists from China, Germany, and the U.S. have uncovered an unexpected link between massive wildfire events and the chemistry of the ozone layer. Published in Science Advances, this study reveals how wildfires, such as the catastrophic 2019/20 Australian bushfires, impact the stratosphere in previously unseen ways.
Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, 2024
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
The Tibetan Plateau hosts the world's largest permafrost region in the middle and low latitudes. Compared to the high-latitude Arctic permafrost, the permafrost here is thinner, warmer, and more sensitive to global warming. The active layer is a crucial zone for energy exchange between permafrost and the atmosphere, effectively reflecting the impact of climate change on permafrost.