Feed aggregator

Electrical Conductivity of Dense MgSiO3 Melt Under Static Compression

GRL - Wed, 06/19/2024 - 05:19
Abstract

The magnetic fields of terrestrial planets are created by core convection. Molten silicate mantles could also generate magnetic fields through their convective motion, known as a silicate dynamo. Recent computational studies have suggested that silicate melts may exhibit high electrical conductivity (EC) at temperatures above 4000 K due to strong electronic conduction, which could activate a silicate dynamo. We determined the EC of dense molten MgSiO3 up to 71 GPa and 4490 K by static compression experiments. It jumped by one order of magnitude upon melting, but 57(27) S/m at 4490 K is much lower than previous predictions, suggesting that molten MgSiO3 carries charge via ions rather than predicted electronic conduction. Nevertheless, the strong temperature dependence of the ionic conductivity found in this study suggests that super-Earths’ hotter magma ocean with larger-scale convection could power a dynamo that drives magnetic fields, which plays key roles in sustaining planetary surface environments.

Regional Ionospheric Super Bubble Induced by Significant Upward Plasma Drift During the 1 December 2023 Geomagnetic Storm

JGR:Space physics - Wed, 06/19/2024 - 05:05
Abstract

An unseasonal equatorial plasma bubble (EPB) event occurred in the East/Southeast Asian sector during the geomagnetic storm on 1 December 2023, causing strong amplitude scintillations from equatorial to middle latitudes. Based on the observations from multiple instruments over a large latitudinal and longitudinal region, the spatial features of the super EPB were investigated. The EPB developed vertically at a fast rising speed ∼470 m/s over the magnetic equator and extended to a very high middle latitude more than 40°N, despite that the storm intensity was not very strong with the minimum SYM-H index −132 nT. In the zonal direction, the super EPB covered over a specific region ∼95–140°E, where the local sunset roughly coincided with southward turning of interplanetary magnetic field (IMF) Bz component. Before the onset of the super EPB, significant upward plasma drift up to ∼110 m/s was observed over the magnetic equator, which could amplify the growth rate of Rayleigh-Taylor instability and lead to the generation of the super EPB. The significant drift was likely caused by eastward penetration electric field (PEF) due to sharp southward turning of IMF Bz. The local time of storm onset and duration of IMF Bz southward turning during the storm main phase may partly determine the onset region and zonal coverage of the EPB.

A Multi‐Model Ensemble System for the Outer Heliosphere (MMESH): Solar Wind Conditions Near Jupiter

JGR:Space physics - Wed, 06/19/2024 - 04:59
Abstract

How the solar wind influences the magnetospheres of the outer planets is a fundamentally important question, but is difficult to answer in the absence of consistent, simultaneous monitoring of the upstream solar wind and the large-scale dynamics internal to the magnetosphere. To compensate for the relative lack of in-situ solar wind data, propagation models are often used to estimate the ambient solar wind conditions at the outer planets for comparison to remote observations or in-situ measurements. This introduces another complication: the propagation of near-Earth solar wind measurements introduces difficult-to-assess uncertainties. Here, we present the Multi-Model Ensemble System for the outer Heliosphere (MMESH) to begin to address these issues, along with the resultant multi-model ensemble (MME) of the solar wind conditions near Jupiter. MMESH accepts as input any number of solar wind models together with contemporaneous in-situ spacecraft data. From these, the system characterizes typical uncertainties in model timing, quantifies how these uncertainties vary under different conditions, attempts to correct for systematic biases in the input model timing, and composes a MME with uncertainties from the results. For the Juno-era (04/07/2016–04/07/2023) MME hindcast for Jupiter presented here, three solar wind propagation models were compared to in-situ measurements from the near-Jupiter spacecraft Ulysses and Juno spanning diverse geometries and phases of the solar cycle across >14,000 hr of data covering 2.5 decades. The MME gives the most-probable near-Jupiter solar wind conditions for times within the tested epoch, outperforming the input models and returning quantified estimates of uncertainty.

Unsettled science on social media

Science - Wed, 06/19/2024 - 02:00
Science, Volume 384, Issue 6703, Page 1389-1389, June 2024.

A near-global multiyear climate data record of the fine-mode and coarse-mode components of atmospheric pure dust

Atmos. Meas. techniques - Tue, 06/18/2024 - 19:10
A near-global multiyear climate data record of the fine-mode and coarse-mode components of atmospheric pure dust
Emmanouil Proestakis, Antonis Gkikas, Thanasis Georgiou, Anna Kampouri, Eleni Drakaki, Claire L. Ryder, Franco Marenco, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 17, 3625–3667, https://doi.org/10.5194/amt-17-3625-2024, 2024
A new four-dimensional, multiyear, and near-global climate data record of the fine-mode (submicrometer diameter) and coarse-mode (supermicrometer diameter) components of atmospheric pure dust is presented. The dataset is considered unique with respect to a wide range of potential applications, including climatological, time series, and trend analysis over extensive geographical domains and temporal periods, validation of atmospheric dust models and datasets, and air quality.

An empirical characterization of the aerosol Ångström exponent interpolation bias using SAGE III/ISS data

Atmos. Meas. techniques - Tue, 06/18/2024 - 19:09
An empirical characterization of the aerosol Ångström exponent interpolation bias using SAGE III/ISS data
Robert P. Damadeo, Viktoria F. Sofieva, Alexei Rozanov, and Larry W. Thomason
Atmos. Meas. Tech., 17, 3669–3678, https://doi.org/10.5194/amt-17-3669-2024, 2024
Comparing different aerosol data sets for scientific studies often requires converting aerosol extinction data between different wavelengths. A common approximation for the spectral behavior of aerosol is the Ångström formula; however, this introduces biases. Using measurements across many different wavelengths from a single instrument, we derive an empirical relationship to both characterize this bias and offer a correction for other studies that may employ this analysis approach.

Calibrating and validating the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) urban cooling model: case studies in France and the United States

Geoscientific Model Development - Tue, 06/18/2024 - 19:00
Calibrating and validating the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) urban cooling model: case studies in France and the United States
Perrine Hamel, Martí Bosch, Léa Tardieu, Aude Lemonsu, Cécile de Munck, Chris Nootenboom, Vincent Viguié, Eric Lonsdorf, James A. Douglass, and Richard P. Sharp
Geosci. Model Dev., 17, 4755–4771, https://doi.org/10.5194/gmd-17-4755-2024, 2024
The InVEST Urban Cooling model estimates the cooling effect of vegetation in cities. We further developed an algorithm to facilitate model calibration and evaluation. Applying the algorithm to case studies in France and in the United States, we found that nighttime air temperature estimates compare well with reference datasets. Estimated change in temperature from a land cover scenario compares well with an alternative model estimate, supporting the use of the model for urban planning decisions.

Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)

Geoscientific Model Development - Tue, 06/18/2024 - 18:56
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, 2024
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.

The ddeq Python library for point source quantification from remote sensing images (version 1.0)

Geoscientific Model Development - Tue, 06/18/2024 - 18:56
The ddeq Python library for point source quantification from remote sensing images (version 1.0)
Gerrit Kuhlmann, Erik Koene, Sandro Meier, Diego Santaren, Grégoire Broquet, Frédéric Chevallier, Janne Hakkarainen, Janne Nurmela, Laia Amorós, Johanna Tamminen, and Dominik Brunner
Geosci. Model Dev., 17, 4773–4789, https://doi.org/10.5194/gmd-17-4773-2024, 2024
We present a Python software library for data-driven emission quantification (ddeq). It can be used to determine the emissions of hot spots (cities, power plants and industry) from remote sensing images using different methods. ddeq can be extended for new datasets and methods, providing a powerful community tool for users and developers. The application of the methods is shown using Jupyter notebooks included in the library.

Heat Transfer in Pyroclastic Density Current‐Ice Interactions: Insights From Experimental and Numerical Simulations

JGR–Solid Earth - Tue, 06/18/2024 - 13:55
Abstract

Stratovolcanoes are common globally, with high-altitude summit regions that are often glacier-clad and intersect the seasonal and perennial snow line. During an eruption, interaction between snow/ice and hot, pyroclastic deposits will potentially lead to extensive melt and steam production. This is particularly pertinent when pyroclastic density currents (PDCs) are emplaced onto and propagate over glacierised substrates. Generated melt and steam are incorporated into the flow, which can cause a transformation from a hot, dry granular flow, to a water-saturated, sediment-laden flow, termed a lahar. Both PDCs and ice-melt lahars are highly hazardous due to their high energy during flow and long runout distances. Knowledge of the physics that underpin these interactions and the transformation to ice-melt lahar is extremely limited, preventing accurate descriptions within hazard models. To physically constrain the thermal interactions we conduct static melting experiments, where a hot granular layer was emplaced onto an ice substrate. The rate of heat transfer through the particle layer, melt and steam generation were quantified. Experiments revealed systematic increases in melt and steam with increasing particle layer thicknesses and temperatures. We also present a one-dimensional numerical model for heat transfer, calibrated against experimental data, capable of accurately predicting temperature and associated melting. Furthermore, similarity solutions are presented for early-time melting which are used to benchmark our numerical scheme, and to provide rapid estimates for meltwater flux hydrographs. These data are vital for predicting melt volume and incorporation into PDCs required to facilitate the transformation to and evolution of ice-melt lahars.

Northbound Transport of the Mediterranean Outflow and the Role of Time‐Dependent Chaotic Advection

GRL - Tue, 06/18/2024 - 11:44
Abstract

The Mediterranean Sea releases approximately 1 Sv of water into the North Atlantic through the Gibraltar Straits, forming the saline Mediterranean Outflow Water (MOW). Its impact on large-scale flow and specifically its northbound Lagrangian pathways are widely debated, yet a comprehensive overview of MOW pathways over recent decades is lacking. We calculate and analyze synthetic Lagrangian trajectories in 1980–2020 reanalysis velocity data. Sixteen percent of the MOW follow a direct northbound path to the sub-polar gyre, reaching a 1,000 m depth crossing window at the southern tip of Rockall Ridge in about 10 years. Surprisingly, time-dependent chaotic advection, not steady currents, drives over half of the northbound transport. Our results suggest a potential 15–20 years predictability in the direct northbound transport. Additionally, monthly variability appears more significant than inter-annual variability in Lagrangian mixing and spreading the MOW.

Quantifying Seepage‐Face Evaporation and Its Effects on Groundwater Flow and Solute Transport in Small‐Slope Tidal Flat

GRL - Tue, 06/18/2024 - 11:04
Abstract

Large-scale seepage faces occur on tidal flats with gentle slope, which are widely distributed worldwide. Evaporation on these seepage faces, leading to salt retention and accumulation, may significantly impact the density-dependent groundwater flow beneath the tidal flats. However, due to nonlinear complexities of the groundwater flow and solute transport on seepage faces, explicit boundary conditions and numerical models to quantify these processes are lacking. In this study, we present both mathematical and numerical models to quantify these processes. Compared to the results of our previous study, this paper shows that seepage-face evaporation can (a) significantly increase the groundwater salinity in the upper intertidal zone, and form multiple groundwater circulation cells in the intertidal zone, (b) cause the disappearance of multiple seepage-faces and reduce the spatial extent of seepage faces notably, (c) and intensify the groundwater and salt exchange as well as the seawater-groundwater circulation through the intertidal zone.

Warm Advection as a Cause for Extreme Heat Event in North China

GRL - Tue, 06/18/2024 - 10:59
Abstract

Extreme heat events (EHEs) often hit North China, resulting in significant losses. The devastating EHE in the 1743 summer, marked as the highest temperature in the past 300 years, led to ∼11,000 fatalities. These historical EHEs prompt us to explore potential mechanisms beyond anthropogenic influences. We employ the Norwegian Earth System Model here to simulate the past millennium climate and then dynamically downscale the July 1743 event using the Weather Research and Forecasting Model. The successful simulation of warming in North China, although it has been a fortunate outcome, is supported by tree-ring records, providing a compelling case study for the event. Through composite and case analyses, we discover a connection between EHEs and active Northeast China Vortexes (NCVs) which induce warm advection, consequently heating the lower atmosphere. Reanalysis further confirms the connection in the modern era. Our study suggests modeling past EHEs, while challenging, is indeed feasible.

The Intensifying East China Sea Kuroshio and Disappearing Ryukyu Current in a Warming Climate

GRL - Tue, 06/18/2024 - 10:54
Abstract

The East China Sea Kuroshio (ECS-Kuroshio) and the Ryukyu Current are the major poleward heat carriers in the North Pacific. Anomalous changes of ECS-Kuroshio and Ryukyu Current could exert substantial influence on the climate in mid-latitude regions. However, owing to limited observations and coarse resolution of climate models, how they might change under anthropogenic warming remains unknown. Here, we find an accelerating ECS-Kuroshio (1.5 Sv) and a decelerating (−2.2 Sv) Ryukyu Current using in-situ observation during 1958–2022, equivalent to 7% strengthening and 20% weakening in the 65 years. The trend is also simulated by four high-resolution climate models, with multi-model ensemble-mean acceleration (deceleration) of the ECS-Kuroshio (Ryukyu Current) of 1.2 ± 0.6 Sv (−6.2 ± 2.5 Sv) over 1950–2050. The weakening subtropical wind field reduces their summed transport o. Enhanced stratification, which induces uplift of current system and weaker topography-flow interaction, leads to the intensifying ECS-Kuroshio and disappearing Ryukyu Current.

Asymmetrical Looping Magnetic Fields and Marsward Flows on the Nightside of Mars

GRL - Tue, 06/18/2024 - 10:03
Abstract

As the interplanetary magnetic field (IMF) carried by the solar wind encounters the martian atmosphere, it tends to pile up and drape around the planet, forming looping magnetic fields and inducing marsward ion flows on the nightside. Previous statistical observations revealed asymmetrical distribution features within this morphology; however, the underlying physical mechanism remains unclear. In this study, utilizing a three-dimensional multi-fluid magnetohydrodynamic simulation model, we successfully reproduce the asymmetrical distributions of the looping magnetic fields and corresponding marsward flows on the martian nightside. Analyzing the magnetic forces resulting from the bending of the IMF over the polar area, we find that the asymmetry is guided by the orientation of the solar wind motional electric field (E SW ). A higher solar wind velocity leads to enhanced magnetic forces, resulting in more tightly wrapped magnetic fields with an increased efficiency in accelerating flows as they approach closer to Mars.

Radiative Forcing From Halogen Reservoir and Halocarbon Breakdown Products

JGR–Atmospheres - Tue, 06/18/2024 - 09:49
Abstract

The direct radiative forcing (RF) from halocarbons is reasonably well characterized. However, the forcing due to polyatomic halogen reservoir and halocarbon breakdown products has not previously been quantified and it is important to estimate this contribution. Four gases, ClONO2, COCl2, COF2 and COClF, are considered; their stratospheric abundances mostly originate from the breakdown of chlorofluorocarbons, hydrochlorofluorocarbons and CCl4. They have significant mid-infrared absorption bands and peak stratospheric mole fractions ranging from around 20 ppt to over 1 ppb, which are large compared to typical abundances of many emitted halocarbons. Using satellite observations of stratospheric abundance, observed infrared spectra, and a narrow-band radiation code, the stratosphere-adjusted radiative forcings (SARF) is computed. The global-annual mean SARF is estimated to be 7 ± 0.8 mW m−2 based on measured abundances in the period 2004–2019, with ClONO2 contributing about 50%. Whilst not a major contributor to anthropogenic RF, only six individual halocarbon gases cause a significantly greater forcing. This forcing is then approximately attributed to their source gases; for most, it modestly enhances (by 1%–3%) both their direct RF and their global warming potentials. The most significant enhancement (5%–15%) is to CCl4, the principal source of stratospheric COCl2 and contributor to ClONO2 abundances; disagreement in recent satellite-based COCl2 retrievals is a significant source of uncertainty. These additional gases enhance the available best estimate of the total forcing due to halocarbon source gases (including e.g., ozone depletion) by about 3%; notably, this is the only identified indirect mechanism that increases, rather than decreases, total halocarbon forcing.

ENSO‐Related Precursor Pathways of Interannual Thermal Anomalies Identified Using a Transformer‐Based Deep Learning Model in the Tropical Pacific

GRL - Tue, 06/18/2024 - 08:35
Abstract

Recent studies have demonstrated great values of deep-learning (DL) methods for improving El Niño-Southern Oscillation (ENSO) predictions. However, the black-box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an interpretable method by performing perturbation experiments to predictors and quantifying input-output relationships in predictions by using a transformer-based model; ENSO-related thermal precursors serving as initial conditions during multi-month time intervals (TIs) are identified in the equatorial-northern Pacific, acting to precondition input predictors to provide for long-lead ENSO predictability. Results reveal the existence of upper-ocean temperature anomaly pathways and consistent phase propagations of thermal precursors around the tropical Pacific. It is illustrated that three-dimensional thermal fields and their basinwide evolution during long TIs act to enhance long-lead prediction skills of ENSO. These physically explainable results indicate that neural networks can adequately represent predictable precursors in the input predictors for successful ENSO predictions.

Two Effective Degrees of Freedom Can Represent the Dominant Features of Global Rayleigh Wave Dispersion Maps

GRL - Tue, 06/18/2024 - 08:35
Abstract

Objectively exploring global variations in crust and upper mantle structure helps constrain fundamental aspects of Earth's plate tectonic and convective processes. Here we adopted a Variational Auto-Encoder to explore the degrees of freedom of global Rayleigh wave dispersion maps at 4–40 mHz. We found that two latent variables sufficiently represent the global variations, suggesting inherent coupling between crustal and mantle seismic properties. We propose that the two extracted latent variables mostly correspond with crustal thickness and upper mantle thermal structure. The first variable shows low values for continental mountain belts and ocean spreading ridges, contrasted by high values for abyssal plains. The second variable shows low values for most oceanic lithosphere and Phanerozoic continental areas, contrasted by high values for Archean cratons. Latent space correlations indicate that continental lithosphere has more strongly coupled depth features than beneath the oceans, which might be a consequence of its longevity.

Seawater Intrusion in the Observed Grounding Zone of Petermann Glacier Causes Extensive Retreat

GRL - Tue, 06/18/2024 - 08:29
Abstract

Understanding grounding line dynamics is critical for projecting glacier evolution and sea level rise. Observations from satellite radar interferometry reveal rapid grounding line migration forced by oceanic tides that are several kilometers larger than predicted by hydrostatic equilibrium, indicating the transition from grounded to floating ice is more complex than previously thought. Recent studies suggest seawater intrusion beneath grounded ice may play a role in driving rapid ice loss. Here, we investigate its impact on the evolution of Petermann Glacier, Greenland, using an ice sheet model. We compare model results with observed changes in grounding line position, velocity, and ice elevation between 2010 and 2022. We match the observed retreat, speed up, and thinning using 3-km-long seawater intrusion that drive peak ice melt rates of 50 m/yr; but we cannot obtain the same agreement without seawater intrusion. Including seawater intrusion in glacier modeling will increase the sensitivity to ocean warming.

THz Radar Observations of Hydrometeors in a Spray Chamber

GRL - Tue, 06/18/2024 - 08:05
Abstract

A THz radar, with its wide bandwidth, is capable of high-resolution imaging down to the centimeter scale. In this study, a THz radar is applied to detect hydrometeors generated in a spray chamber. The observed backscattering signals show fluctuations at centimeter scales, indicating various hydrometeor distribution patterns along the radar beam. A co-located High-Speed Imaging (HSI) sensor is used to measure the Drop Size Distributions (DSD) in the spray chamber. The radar sampling beam is well aligned with the HSI probes, allowing an objective comparison between the remote sensing and in situ observations. In this study, the observed radar power is compared with the power estimated from the HSI measurements. Results show great consistency, with power difference smaller than 0.5 dB. This study demonstrates the feasibility and great potential of using a THz radar for ultra-high-resolution observations of clouds in a laboratory facility, and in the real atmosphere.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer