Geoscientific Model Development

Syndicate content
Combined list of the recent articles of the journal Geoscientific Model Development and the recent discussion forum Geoscientific Model Development Discussions
Updated: 18 hours 13 min ago

New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model

Thu, 02/22/2024 - 14:25
New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model
Marika M. Holland, Cecile Hannay, John Fasullo, Alexandra Jahn, Jennifer E. Kay, Michael Mills, Isla R. Simpson, William Wieder, Peter Lawrence, Erik Kluzek, and David Bailey
Geosci. Model Dev., 17, 1585–1602, https://doi.org/10.5194/gmd-17-1585-2024, 2024
Climate evolves in response to changing forcings, as prescribed in simulations. Models and forcings are updated over time to reflect new understanding. This makes it difficult to attribute simulation differences to either model or forcing changes. Here we present new simulations which enable the separation of model structure and forcing influence between two widely used simulation sets. Results indicate a strong influence of aerosol emission uncertainty on historical climate.

Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model

Thu, 02/22/2024 - 14:25
Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model
Hauke Schmidt, Sebastian Rast, Jiawei Bao, Amrit Cassim, Shih-Wei Fang, Diego Jimenez-de la Cuesta, Paul Keil, Lukas Kluft, Clarissa Kroll, Theresa Lang, Ulrike Niemeier, Andrea Schneidereit, Andrew I. L. Williams, and Bjorn Stevens
Geosci. Model Dev., 17, 1563–1584, https://doi.org/10.5194/gmd-17-1563-2024, 2024
A recent development in numerical simulations of the global atmosphere is the increase in horizontal resolution to grid spacings of a few kilometers. However, the vertical grid spacing of these models has not been reduced at the same rate as the horizontal grid spacing. Here, we assess the effects of much finer vertical grid spacings, in particular the impacts on cloud quantities and the atmospheric energy balance.

Quantifying wildfire drivers and predictability in boreal peatlands using a two-step error-correcting machine learning framework in TeFire v1.0

Wed, 02/21/2024 - 18:52
Quantifying wildfire drivers and predictability in boreal peatlands using a two-step error-correcting machine learning framework in TeFire v1.0
Rongyun Tang, Mingzhou Jin, Jiafu Mao, Daniel M. Ricciuto, Anping Chen, and Yulong Zhang
Geosci. Model Dev., 17, 1525–1542, https://doi.org/10.5194/gmd-17-1525-2024, 2024
Carbon-rich boreal peatlands are at risk of burning. The reproducibility and predictability of rare peatland fire events are investigated by constructing a two-step error-correcting machine learning framework to tackle such complex systems. Fire occurrence and impacts are highly predictable with our approach. Factor-controlling simulations revealed that temperature, moisture, and freeze–thaw cycles control boreal peatland fires, indicating thermal impacts on causing peat fires.

Southern Ocean Ice Prediction System version 1.0 (SOIPS v1.0): description of the system and evaluation of synoptic-scale sea ice forecasts

Wed, 02/21/2024 - 18:52
Southern Ocean Ice Prediction System version 1.0 (SOIPS v1.0): description of the system and evaluation of synoptic-scale sea ice forecasts
Fu Zhao, Xi Liang, Zhongxiang Tian, Ming Li, Na Liu, and Chengyan Liu
Geosci. Model Dev. Discuss., https//doi.org/10.5194/gmd-2024-4,2024
Preprint under review for GMD (discussion: open, 0 comments)
In this work, we introduce a newly developed Antarctic sea ice forecasting system, namely Southern Ocean Ice Prediction System (SOIPS). The system is based on a regional sea-ice‒ocean‒ice-shelf coupled model and can assimilate sea ice concentration observations. Through assessing the system performance on sea ice forecasts, we find that the system can provide reliable Antarctic sea ice forecasts for next 7 days, and has the potential to guide ship navigation in the Antarctic sea ice zone.

Impacts of updated reaction kinetics on the global GEOS-Chem simulation of atmospheric chemistry

Tue, 02/20/2024 - 18:52
Impacts of updated reaction kinetics on the global GEOS-Chem simulation of atmospheric chemistry
Kelvin H. Bates, Mathew J. Evans, Barron H. Henderson, and Daniel J. Jacob
Geosci. Model Dev., 17, 1511–1524, https://doi.org/10.5194/gmd-17-1511-2024, 2024
Accurate representation of rates and products of chemical reactions in atmospheric models is crucial for simulating concentrations of pollutants and climate forcers. We update the widely used GEOS-Chem atmospheric chemistry model with reaction parameters from recent compilations of experimental data and demonstrate the implications for key atmospheric chemical species. The updates decrease tropospheric CO mixing ratios and increase stratospheric nitrogen oxide mixing ratios, among other changes.

Spatial spin-up of precipitation in limited-area convection-permitting simulations over North America using the CRCM6/GEM5.0 model

Tue, 02/20/2024 - 18:52
Spatial spin-up of precipitation in limited-area convection-permitting simulations over North America using the CRCM6/GEM5.0 model
François Roberge, Alejandro Di Luca, René Laprise, Philippe Lucas-Picher, and Julie Thériault
Geosci. Model Dev., 17, 1497–1510, https://doi.org/10.5194/gmd-17-1497-2024, 2024
Our study addresses a challenge in dynamical downscaling using regional climate models, focusing on the lack of small-scale features near the boundaries. We introduce a method to identify this “spatial spin-up” in precipitation simulations. Results show spin-up distances up to 300 km, varying by season and driving variable. Double nesting with comprehensive variables (e.g. microphysical variables) offers advantages. Findings will help optimize simulations for better climate projections.

Sensitivity of atmospheric rivers to aerosol treatment in regional climate simulations: insights from the AIRA identification algorithm

Mon, 02/19/2024 - 18:52
Sensitivity of atmospheric rivers to aerosol treatment in regional climate simulations: insights from the AIRA identification algorithm
Eloisa Raluy-López, Juan Pedro Montávez, and Pedro Jiménez-Guerrero
Geosci. Model Dev., 17, 1469–1495, https://doi.org/10.5194/gmd-17-1469-2024, 2024
Atmospheric rivers (ARs) represent a significant source of water but are also related to extreme precipitation events. Here, we present a new regional-scale AR identification algorithm and apply it to three simulations that include aerosol interactions at different levels. The results show that aerosols modify the intensity and trajectory of ARs and redistribute the AR-related precipitation. Thus, the correct inclusion of aerosol effects is important in the simulation of AR behavior.

Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 1: Dust budget analyses and the impacts of a revised coupling scheme

Fri, 02/16/2024 - 18:58
Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 1: Dust budget analyses and the impacts of a revised coupling scheme
Hui Wan, Kai Zhang, Christopher J. Vogl, Carol S. Woodward, Richard C. Easter, Philip J. Rasch, Yan Feng, and Hailong Wang
Geosci. Model Dev., 17, 1387–1407, https://doi.org/10.5194/gmd-17-1387-2024, 2024
Sophisticated numerical models of the Earth's atmosphere include representations of many physical and chemical processes. In numerical simulations, these processes need to be calculated in a certain sequence. This study reveals the weaknesses of the sequence of calculations used for aerosol processes in a global atmosphere model. A revision of the sequence is proposed and its impacts on the simulated global aerosol climatology are evaluated.

Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 2: A semi-discrete error analysis framework for assessing coupling schemes

Fri, 02/16/2024 - 18:58
Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 2: A semi-discrete error analysis framework for assessing coupling schemes
Christopher J. Vogl, Hui Wan, Carol S. Woodward, and Quan M. Bui
Geosci. Model Dev., 17, 1409–1428, https://doi.org/10.5194/gmd-17-1409-2024, 2024
Generally speaking, accurate climate simulation requires an accurate evolution of the underlying mathematical equations on large computers. The equations are typically formulated and evolved in process groups. Process coupling refers to how the evolution of each group is combined with that of other groups to evolve the full set of equations for the whole atmosphere. This work presents a mathematical framework to evaluate methods without the need to first implement the methods.

Benchmarking GOCART-2G in the Goddard Earth Observing System (GEOS)

Fri, 02/16/2024 - 18:58
Benchmarking GOCART-2G in the Goddard Earth Observing System (GEOS)
Allison B. Collow, Peter R. Colarco, Arlindo M. da Silva, Virginie Buchard, Huisheng Bian, Mian Chin, Sampa Das, Ravi Govindaraju, Dongchul Kim, and Valentina Aquila
Geosci. Model Dev., 17, 1443–1468, https://doi.org/10.5194/gmd-17-1443-2024, 2024
The GOCART aerosol module within the Goddard Earth Observing System recently underwent a major refactoring and update to the representation of physical processes. Code changes that were included in GOCART Second Generation (GOCART-2G) are documented, and we establish a benchmark simulation that is to be used for future development of the system. The 4-year benchmark simulation was evaluated using in situ and spaceborne measurements to develop a baseline and prioritize future development.

Energy-conserving physics for nonhydrostatic dynamics in mass coordinate models

Fri, 02/16/2024 - 18:58
Energy-conserving physics for nonhydrostatic dynamics in mass coordinate models
Oksana Guba, Mark A. Taylor, Peter A. Bosler, Christopher Eldred, and Peter H. Lauritzen
Geosci. Model Dev., 17, 1429–1442, https://doi.org/10.5194/gmd-17-1429-2024, 2024
We want to reduce errors in the moist energy budget in numerical atmospheric models. We study a few common assumptions and mechanisms that are used for the moist physics. Some mechanisms are more consistent with the underlying equations. Separately, we study how assumptions about models' thermodynamics affect the modeled energy of precipitation. We also explain how to conserve energy in the moist physics for nonhydrostatic models.

The CHIMERE chemistry-transport model v2023r1

Fri, 02/16/2024 - 16:23
The CHIMERE chemistry-transport model v2023r1
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev. Discuss., https//doi.org/10.5194/gmd-2024-20,2024
Preprint under review for GMD (discussion: open, 0 comments)
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same set-up. Processes have been modified and updated such as turbulence, transport schemes and dry deposition.

A new lightning scheme in Canada's Atmospheric Model, CanAM5.1: Implementation, evaluation, and projections of lightning and fire in future climates

Fri, 02/16/2024 - 16:23
A new lightning scheme in Canada's Atmospheric Model, CanAM5.1: Implementation, evaluation, and projections of lightning and fire in future climates
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev. Discuss., https//doi.org/10.5194/gmd-2024-24,2024
Preprint under review for GMD (discussion: open, 0 comments)
This paper describes how lightning was added as a process in the Canadian Earth System model, in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to changing climate.

Evaluation and optimisation of the soil carbon turnover routine in the MONICA model (version 3.3.1)

Thu, 02/15/2024 - 16:23
Evaluation and optimisation of the soil carbon turnover routine in the MONICA model (version 3.3.1)
Konstantin Aiteew, Jarno Rouhiainen, Claas Nendel, and René Dechow
Geosci. Model Dev., 17, 1349–1385, https://doi.org/10.5194/gmd-17-1349-2024, 2024
This study evaluated the biogeochemical model MONICA and its performance in simulating soil organic carbon changes. MONICA can reproduce plant growth, carbon and nitrogen dynamics, soil water and temperature. The model results were compared with five established carbon turnover models. With the exception of certain sites, adequate reproduction of soil organic carbon stock change rates was achieved. The MONICA model was capable of performing similar to or even better than the other models.

Assessing the sensitivity of aerosol mass budget and effective radiative forcing to horizontal grid spacing in E3SMv1 using a regional refinement approach

Thu, 02/15/2024 - 16:23
Assessing the sensitivity of aerosol mass budget and effective radiative forcing to horizontal grid spacing in E3SMv1 using a regional refinement approach
Jianfeng Li, Kai Zhang, Taufiq Hassan, Shixuan Zhang, Po-Lun Ma, Balwinder Singh, Qiyang Yan, and Huilin Huang
Geosci. Model Dev., 17, 1327–1347, https://doi.org/10.5194/gmd-17-1327-2024, 2024
By comparing E3SM simulations with and without regional refinement, we find that model horizontal grid spacing considerably affects the simulated aerosol mass budget, aerosol–cloud interactions, and the effective radiative forcing of anthropogenic aerosols. The study identifies the critical physical processes strongly influenced by model resolution. It also highlights the benefit of applying regional refinement in future modeling studies at higher or even convection-permitting resolutions.

jsmetrics v0.2.0: a Python package for metrics and algorithms used to identify or characterise atmospheric jet streams

Wed, 02/14/2024 - 18:08
jsmetrics v0.2.0: a Python package for metrics and algorithms used to identify or characterise atmospheric jet streams
Tom Keel, Chris Brierley, and Tamsin Edwards
Geosci. Model Dev., 17, 1229–1247, https://doi.org/10.5194/gmd-17-1229-2024, 2024
Jet streams are an important control on surface weather as their speed and shape can modify the properties of weather systems. Establishing trends in the operation of jet streams may provide some indication of the future of weather in a warming world. Despite this, it has not been easy to establish trends, as many methods have been used to characterise them in data. We introduce a tool containing various implementations of jet stream statistics and algorithms that works in a standardised manner.

Towards the definition of a solar forcing dataset for CMIP7

Wed, 02/14/2024 - 18:08
Towards the definition of a solar forcing dataset for CMIP7
Bernd Funke, Thierry Dudok de Wit, Ilaria Ermolli, Margit Haberreiter, Doug Kinnison, Daniel Marsh, Hilde Nesse, Annika Seppälä, Miriam Sinnhuber, and Ilya Usoskin
Geosci. Model Dev., 17, 1217–1227, https://doi.org/10.5194/gmd-17-1217-2024, 2024
We outline a road map for the preparation of a solar forcing dataset for the upcoming Phase 7 of the Coupled Model Intercomparison Project (CMIP7), considering the latest scientific advances made in the reconstruction of solar forcing and in the understanding of climate response while also addressing the issues that were raised during CMIP6.

ibicus: a new open-source Python package and comprehensive interface for statistical bias adjustment and evaluation in climate modelling (v1.0.1)

Wed, 02/14/2024 - 16:46
ibicus: a new open-source Python package and comprehensive interface for statistical bias adjustment and evaluation in climate modelling (v1.0.1)
Fiona Raphaela Spuler, Jakob Benjamin Wessel, Edward Comyn-Platt, James Varndell, and Chiara Cagnazzo
Geosci. Model Dev., 17, 1249–1269, https://doi.org/10.5194/gmd-17-1249-2024, 2024
Before using climate models to study the impacts of climate change, bias adjustment is commonly applied to the models to ensure that they correspond with observations at a local scale. However, this can introduce undesirable distortions into the climate model. In this paper, we present an open-source python package called ibicus to enable the comparison and detailed evaluation of bias adjustment methods, facilitating their transparent and rigorous application.

The implementation of dust mineralogy in COSMO5.05-MUSCAT

Wed, 02/14/2024 - 16:46
The implementation of dust mineralogy in COSMO5.05-MUSCAT
Sofía Gómez Maqueo Anaya, Dietrich Althausen, Matthias Faust, Holger Baars, Bernd Heinold, Julian Hofer, Ina Tegen, Albert Ansmann, Ronny Engelmann, Annett Skupin, Birgit Heese, and Kerstin Schepanski
Geosci. Model Dev., 17, 1271–1295, https://doi.org/10.5194/gmd-17-1271-2024, 2024
Mineral dust aerosol particles vary greatly in their composition depending on source region, which leads to different physicochemical properties. Most atmosphere–aerosol models consider mineral dust aerosols to be compositionally homogeneous, which ultimately increases model uncertainty. Here, we present an approach to explicitly consider the heterogeneity of the mineralogical composition for simulations of the Saharan atmospheric dust cycle with regard to dust transport towards the Atlantic.

SnowPappus v1.0, a blowing-snow model for large-scale applications of the Crocus snow scheme

Wed, 02/14/2024 - 16:23
SnowPappus v1.0, a blowing-snow model for large-scale applications of the Crocus snow scheme
Matthieu Baron, Ange Haddjeri, Matthieu Lafaysse, Louis Le Toumelin, Vincent Vionnet, and Mathieu Fructus
Geosci. Model Dev., 17, 1297–1326, https://doi.org/10.5194/gmd-17-1297-2024, 2024
Increasing the spatial resolution of numerical systems simulating snowpack evolution in mountain areas requires representing small-scale processes such as wind-induced snow transport. We present SnowPappus, a simple scheme coupled with the Crocus snow model to compute blowing-snow fluxes and redistribute snow among grid points at 250 m resolution. In terms of numerical cost, it is suitable for large-scale applications. We present point-scale evaluations of fluxes and snow transport occurrence.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer