Space Science Reviews

Syndicate content
The latest content available from Springer
Updated: 1 day 4 hours ago

The Dawn of Dust Astronomy

Mon, 10/14/2019 - 00:00

We review the development of dust science from the first ground-based astronomical observations of dust in space to compositional analysis of individual dust particles and their source objects. A multitude of observational techniques is available for the scientific study of space dust: from meteors and interplanetary dust particles collected in the upper atmosphere to dust analyzed in situ or returned to Earth. In situ dust detectors have been developed from simple dust impact detectors determining the dust hazard in Earth orbit to dust telescopes capable of providing compositional analysis and accurate trajectory determination of individual dust particles in space. The concept of Dust Astronomy has been developed, recognizing that dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles’ birthplace and their bulk properties, we learn about the remote environment out of which the particles were formed. Dust Observatory missions like Cassini, Stardust, and Rosetta study Saturn’s satellites and rings and the dust environments of comet Wild 2 and comet Churyumov-Gerasimenko, respectively. Supplemented by simulations of dusty processes in the laboratory we are beginning to understand the dusty environments in space.

The Influence of Black Hole Binarity on Tidal Disruption Events

Wed, 10/09/2019 - 00:00

Mergers are fundamental to the standard paradigm of galaxy evolution, and provide a natural formation mechanism for supermassive black hole binaries. The formation process of such a binary can have a direct impact on the rate at which stars are tidally disrupted by one or the other black hole, and the luminous signature of the tidal disruption itself can have distinct imprints of a binary companion. In this article we review our current understanding of the influence of black hole binarity on the properties of tidal disruption events. We discuss the rates of tidal disruption by supermassive black hole binaries, the impact of a second black hole on the fallback of debris and the formation of an accretion flow, and the prospects for detection of tidal disruption events by supermassive black hole binaries.

Sample Collection and Return from Mars: Optimising Sample Collection Based on the Microbial Ecology of Terrestrial Volcanic Environments

Wed, 10/09/2019 - 00:00

With no large-scale granitic continental crust, all environments on Mars are fundamentally derived from basaltic sources or, in the case of environments such as ices, evaporitic, and sedimentary deposits, influenced by the composition of the volcanic crust. Therefore, the selection of samples on Mars by robots and humans for investigating habitability or testing for the presence of life should be guided by our understanding of the microbial ecology of volcanic terrains on the Earth. In this paper, we discuss the microbial ecology of volcanic rocks and hydrothermal systems on the Earth. We draw on microbiological investigations of volcanic environments accomplished both by microbiology-focused studies and Mars analog studies such as the NASA BASALT project. A synthesis of these data emphasises a number of common patterns that include: (1) the heterogeneous distribution of biomass and diversity in all studied materials, (2) physical, chemical, and biological factors that can cause heterogeneous microbial biomass and diversity from sub-millimetre scales to kilometre scales, (3) the difficulty of a priori prediction of which organisms will colonise given materials, and (4) the potential for samples that are habitable, but contain no evidence of a biota. From these observations, we suggest an idealised strategy for sample collection. It includes: (1) collection of multiple samples in any given material type (∼9 or more samples), (2) collection of a coherent sample of sufficient size ( \({\sim}10~\mbox{cm}^{3}\) ) that takes into account observed heterogeneities in microbial distribution in these materials on Earth, and (3) collection of multiple sample suites in the same material across large spatial scales. We suggest that a microbial ecology-driven strategy for investigating the habitability and presence of life on Mars is likely to yield the most promising sample set of the greatest use to the largest number of astrobiologists and planetary scientists.

Interstellar Dust in the Solar System

Wed, 10/09/2019 - 00:00

Interstellar dust from the Local Interstellar Cloud was detected unambiguously for the first time in 1992 (Grün et al. in Nature 362:428–430, 1993). Since then, great progress has been made in observing local interstellar dust in the Solar System using a variety of methods that, all together, provide complementary views of the dust particles from our local galactic neighborhood. The complementary methods discussed in this paper are: (1) in situ observations with dust detectors, (2) sample return, (3) observations of dust in the infrared, and (4) detections using spacecraft antennae. We review the current state of the art of local interstellar dust research, with a special focus on the advances made in the last ∼10 years of interstellar dust research. We introduce this paper with an overview of the definitions of interstellar dust. We describe the dynamics of the dust particles moving through the heliosphere and report on the progress made in the modelling efforts especially in the last decade. We also review the currently available in situ measurements of interstellar dust flux, speed, direction and size distribution from various missions, in specific from Ulysses and Cassini, and their interpretation in context of the dust dynamics studies. Interstellar dust composition is also reviewed from Cassini in situ time of flight measurements and from the Stardust sample return mission that both took place in the last decade. Finally, also new dust measurements from spacecraft antennae are reviewed. The paper concludes with a discussion on currently still open questions, and an outlook for the future.

Geoscience for Understanding Habitability in the Solar System and Beyond

Tue, 08/20/2019 - 00:00

This paper reviews habitability conditions for a terrestrial planet from the point of view of geosciences. It addresses how interactions between the interior of a planet or a moon and its atmosphere and surface (including hydrosphere and biosphere) can affect habitability of the celestial body. It does not consider in detail the role of the central star but focusses more on surface conditions capable of sustaining life. We deal with fundamental issues of planetary habitability, i.e. the environmental conditions capable of sustaining life, and the above-mentioned interactions can affect the habitability of the celestial body.

We address some hotly debated questions including:

  • How do core and mantle affect the evolution and habitability of planets?

  • What are the consequences of mantle overturn on the evolution of the interior and atmosphere?

  • What is the role of the global carbon and water cycles?

  • What influence do comet and asteroid impacts exert on the evolution of the planet?

  • How does life interact with the evolution of the Earth’s geosphere and atmosphere?

  • How can knowledge of the solar system geophysics and habitability be applied to exoplanets?

  • In addition, we address the identification of preserved life tracers in the context of the interaction of life with planetary evolution.

    Correction to: The Thermal, Mechanical, Structural, and Dielectric Properties of Cometary Nuclei After Rosetta

    Wed, 07/17/2019 - 00:00

    Correction to: Space Sci. Rev. (2019) 215: 29

    The article The Thermal, Mechanical, Structural, and Dielectric Properties of Cometary Nuclei After Rosetta, written by Groussin et al., was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 2 May 2019 without open access. With the author(s)’ decision to opt for Open Choice the copyright of the article changed to © The Author(s) 2019 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

    Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer