This article presents a new relative radiometric normalization (RRN) method for multitemporal satellite images based on the automatic selection and multistep optimization of the radiometric control set samples (RCSS). A novel image-fusion strategy based on the fast local Laplacian filter is employed to generate a difference index using the complementary information extracted from the change vector analysis and absolute gradient difference of the bitemporal satellite images. The difference index is then segmented into changed and unchanged pixels using a fast level-set method. A novel local outlier method is then applied to the unchanged pixels of the bitemporal images to identify the initial RCSS, which are then scored by a novel unchanged purity index, and the histogram of the scores is used to produce the final RCSS. The RRN between the bitemporal images is achieved by adjusting the subject image to the reference image using orthogonal linear regression on the final RCSS. The proposed method is applied to seven different data sets comprised of bitemporal images acquired by various satellites, including Landsat TM/ETM+, Sentinel 2B, Worldview 2/3, and Aster. The experimental results show that the method outperforms the state-of-the-art RRN methods. It reduces the average root-mean-square error (RMSE) of the best baseline method (IR-MAD) by up to 32% considering all data sets.
Deep learning algorithms, especially convolutional neural networks (CNNs), have recently emerged as a dominant paradigm for high spatial resolution remote sensing (HRS) image recognition. A large amount of CNNs have already been successfully applied to various HRS recognition tasks, such as land-cover classification and scene classification. However, they are often modifications of the existing CNNs derived from natural image processing, in which the network architecture is inherited without consideration of the complexity and specificity of HRS images. In this article, the remote sensing deep neural network (RSNet) framework is proposed using an automatically search strategy to find the appropriate network architecture for HRS image recognition tasks. In RSNet, the hierarchical search space is first designed to include module- and transition-level spaces. The module-level space defines the basic structure block, where a series of lightweight operations as candidates, including depthwise separable convolutions, is proposed to ensure the efficiency. The transition-level space controls the spatial resolution transformations of the features. In the hierarchical search space, a gradient-based search strategy is used to find the appropriate architecture. In RSNet, the task-driven architecture training process can acquire the optimal model parameters of the switchable recognition module for HRS image recognition tasks. The experimental results obtained using four benchmark data sets for land-cover classification and scene classification tasks demonstrate that the searched RSNet can achieve a satisfactory accuracy with a high computational efficiency and, hence, provides an effective option for the processing of HRS imagery.
Multispectral remote sensing (RS) images are often contaminated by the haze that degrades the quality of RS data and reduces the accuracy of interpretation and classification. Recently, the emerging deep convolutional neural networks (CNNs) provide us new approaches for RS image dehazing. Unfortunately, the power of CNNs is limited by the lack of sufficient hazy-clean pairs of RS imagery, which makes supervised learning impractical. To meet the data hunger of supervised CNNs, we propose a novel haze synthesis method to generate realistic hazy multispectral images by modeling the wavelength-dependent and spatial-varying characteristics of haze in RS images. The proposed haze synthesis method not only alleviates the lack of realistic training pairs in multispectral RS image dehazing but also provides a benchmark data set for quantitative evaluation. Furthermore, we propose an end-to-end RSDehazeNet for haze removal. We utilize both local and global residual learning strategies in RSDehazeNet for fast convergence with superior performance. Channel attention modules are incorporated to exploit strong channel correlation in multispectral RS images. Experimental results show that the proposed network outperforms the state-of-the-art methods for synthetic data and real Landsat-8 OLI multispectral RS images.
Aerosol particles affect the Earth’s radiative balance and represent one of the largest uncertainties in climate research. The removal of clouds is the first step and critical in the aerosol retrievals. However, the cloud detection is still challenging. Here, a novel simplified cloud detection algorithm (SCDA) is proposed to identify the cloud and clear-sky over land and based on a simplified radiative transfer model (RTM). The fewer input bands, dynamic thresholds, and only one parameter to be modified are the main advantages of the algorithm, which can be applied to different satellite sensors. In this article, we apply SCDA to the Himawari-8 data in 2016 for preliminary analysis. The detection results are validated using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) vertical feature mask (VFM) data and the National Centers for Environmental Information (NCEI) ground-based observation data. We also compare the results with the Himawari-8 cloud products from the Japan Aerospace Exploration Agency (JAXA). Compared with CALIPSO VFM data and NCEI ground-based observation data, the correct rate of SCDA cloud detection result is 86.08% and 79.86%, which are higher than that of Himawari-8 cloud products (85.71% and 78.89%). The correct rate of SCDA clear-sky detection result is 88.33% and 87.85%, which are close to the correct rate of Himawari-8 clear-sky products (90.54% and 88.63%). The overall performance of the SCDA is comparable to that of the threshold method for JAXA Himawari-8 cloud products. Therefore, the SCDA can provide accurate cloud mask with only one threshold to be modified and few input parameters.
Satellite ocean color missions require accurate system vicarious calibrations (SVC) to retrieve the relatively small remote-sensing reflectance ( $R_{mathrm {rs}}$ , sr−1) from the at-sensor radiance. However, the current atmospheric correction and SVC procedures do not include calibration of the “long” near infrared band (NIRL—869 nm for MODIS), partially because earlier studies, based primarily on simulations, indicate that accuracy in the retrieved $R_{mathrm {rs}}$ is insensitive to moderate changes in the NIRL vicarious gain ( $g$ ). However, the sensitivity of ocean color data products to $g$ (NIRL) has not been thoroughly examined. Here, we first derive 10 SVC “gain configurations” (vicarious gains for all visible and NIR bands) for MODIS/Aqua using current operational NASA protocols, each time assuming a different $g$ (869). From these, we derive a suite of ~1.4E6 unique gain configurations with $g$ (869) ranging from 0.85 to 1.2. All MODIS/A data for 25 locations within each of five ocean gyres were then processed using each of these gain configurations. Resultant time series show substantial variability in dominant $R_{mathrm {rs}}$ (547) patterns in response to changes in $g$ (869) (and associated gain configurati-
ns). Overall, mean $R_{mathrm {rs}}$ (547) values generally decrease with increasing $g$ (869), while the standard deviations around those means show gyre-specific minima for $0.97 < g$ (869) < 1.02. Following these sensitivity analyses, we assess the potential to resolve $g$ (869) using such time series, finding $g$ (869) = 1.025 most closely comports with expectations. This approach is broadly applicable to other ocean color sensors, and highlights the importance of rigorous cross-sensor calibration of the NIRL bands, with implications on consistency of merged-sensor data sets.
Frequent Sargassum beaching in the Caribbean Sea and other regions has caused severe problems for local environments and economies. Although coarse-resolution satellite instruments can provide large-scale Sargassum distributions, their use is problematic in nearshore waters that are directly relevant to local communities. Finer resolution instruments, such as the multispectral instruments (MSIs) on the Sentinel-2 satellites, show potential to fill this gap, yet automatic Sargassum extraction is difficult due to compounding factors. In this article, a new approach is developed to extract Sargassum features automatically from MSI Floating Algae Index (FAI) images. Because of the high spatial resolution, limited signal-to-noise ratio (SNR), and staggered instrument internal configuration, there are many nonalgae bright targets (including cloud artifacts and wave-induced glints) causing enhanced near-infrared reflectance and elevated FAI values. Based on the spatial patterns of these image “noises,” a Trainable Nonlinear Reaction Diffusion (TNRD) denoising model is trained to estimate and remove such noise. The model shows excellent performance when tested over realistic noise patterns derived from MSI measurements. After removing such noise and masking clouds (as well as cloud shadows and glint patterns), biomass density from each valid pixel is quantified using the FAI-biomass model established from earlier field measurements, from which Sargassum morphology (length/width/biomass) is derived. Overall, the proposed approach achieves over 86% Sargassum extraction accuracy and shows preliminary success on Landsat-8 images. The approach is expected to be incorporated in the existing near real-time Sargassum Watch System for both Landsat-8 and Sentinel-2 observations to monitor Sargassum over nearshore waters.
Convolutional neural networks (CNNs) have achieved great success when characterizing remote sensing (RS) images. However, the lack of sufficient annotated data (together with the high complexity of the RS image domain) often makes supervised and transfer learning schemes limited from an operational perspective. Despite the fact that unsupervised methods can potentially relieve these limitations, they are frequently unable to effectively exploit relevant prior knowledge about the RS domain, which may eventually constrain their final performance. In order to address these challenges, this article presents a new unsupervised deep metric learning model, called spatially augmented momentum contrast (SauMoCo), which has been specially designed to characterize unlabeled RS scenes. Based on the first law of geography, the proposed approach defines spatial augmentation criteria to uncover semantic relationships among land cover tiles. Then, a queue of deep embeddings is constructed to enhance the semantic variety of RS tiles within the considered contrastive learning process, where an auxiliary CNN model serves as an updating mechanism. Our experimental comparison, including different state-of-the-art techniques and benchmark RS image archives, reveals that the proposed approach obtains remarkable performance gains when characterizing unlabeled scenes since it is able to substantially enhance the discrimination ability among complex land cover categories. The source codes of this article will be made available to the RS community for reproducible research.
3-D digital city vividly presents a real-world city and has been widely needed for many application domains. Numerous pole-like objects (PLOs), including trees, street lamps, and traffic signs, are an indispensable part of 3-D digital city. The point cloud data of mobile laser scanning (MLS) systems can capture both the geometric shape and geospatial coordinates of the PLOs while moving along the roads. This article is motivated to accurately extract and efficiently model PLOs from the point cloud data. The main contributions of this article are as follows: 1) a divergence-incorporated clustering algorithm is proposed to extract trunks accurately from the pole-like 3-D distribution perspective of point cloud; 2) an adaptive growing strategy of alternately extending and updating 3-D neighbors is proposed to get the complete canopy points of various shapes and density; and 3) the part-based modeling is proposed to synthesize the point cloud of PLOs with meaningful 3-D shapes, providing a way to model objects for the 3-D digital city vividly and efficiently. The proposed method is tested on three data sets with different interference, shape of the canopy, and point density. Experimental results demonstrate that the proposed method can extract and model the PLOs effectively and efficiently for 3-D digital city. The precision of trunk extraction is 98.45%, 98.08%, and 92.39%, the completeness of canopy extraction is 80.54%, 89.84%, and 89.29%, and the modeling time for a PLO is 0.011, 0.038, and 0.063 s in three data sets.
This article explores the possibility to exploit global navigation satellite systems (GNSS) signals to obtain radar imagery of ships. This is a new application area for the GNSS remote sensing, which adds to a rich line of research about the alternative utilization of navigation satellites for remote sensing purposes, which currently includes reflectometry, passive radar, and synthetic aperture radar (SAR) systems. In the field of short-range maritime surveillance, GNSS-based passive radar has already proven to detect and localize ship targets of interest. The possibility to obtain meaningful radar images of observed vessels would represent an additional benefit, opening the doors to noncooperative ship classification capability with this technology. To this purpose, a proper processing chain is here conceived and developed, able to achieve well-focused images of ships while maximizing their signal-to-background ratio. Moreover, the scaling factors needed to map the backscatter energy in the range and cross-range domain are also analytically derived, enabling the estimation of the length of the target. The effectiveness of the proposed approach at obtaining radar images of ship targets and extracting relevant features is confirmed via an experimental campaign, comprising multiple Galileo satellites and a commercial ferry undergoing different kinds of motion.
Delay-Doppler maps (DDMs) are generally the lowest level of calibrated observables produced from global navigation satellite system reflectometry (GNSS-R). A forward model is presented to relate the DDM, in units of absolute power at the receiver, to the ocean surface wind field. This model and the related Jacobian are designed for use in assimilating DDM observables into weather forecast models. Given that the forward model represents a full set of DDM measurements, direct assimilation of this lower level data product is expected to be more effective than using individual specular-point wind speed retrievals. The forward model is assessed by comparing DDMs computed from hurricane weather research and forecasting (HWRF) model winds against measured DDMs from the Cyclone Global Navigation Satellite System (CYGNSS) Level 1a data. Quality controls are proposed as a result of observed discrepancies due to the effect of swell, power calibration bias, inaccurate specular point position, and model representativeness error. DDM assimilation is demonstrated using a variational analysis method (VAM) applied to three cases from June 2017, specifically selected due to the large deviation between scatterometer winds and European Centre for Medium-Range Weather Forecasts (ECMWF) predictions. DDM assimilation reduced the root-mean-square error (RMSE) by 15%, 28%, and 48%, respectively, in each of the three examples.
We propose a stable ${Q}$ -estimation approach based on the compensation of amplitude spectra in the time–frequency domain after a synchrosqueezed wavelet transform (SSWT). SSWT employing a post-processing frequency reallocation method to the original representation of a continuous wavelet transform (CWT) for improving its readability provides the sharper time–frequency representation of a signal when compared with the other traditional time–frequency methods such as CWT or S-transform. For ${Q}$ -estimation, we transform a seismic trace into the time–frequency domain using SSWT at first. Then, we derive the amplitude compensation in the SSWT domain. By searching the predetermined ${Q}$ range, the comparison between the compensated amplitude spectrum and the reference one in the SSWT domain is carried out. The output optimized ${Q}$ -factor estimation is evaluated by the minimum of the mean square error. For the robust and fast stabilization form of the amplitude compensation in the SSWT domain with noise amplification damping, the seismic pulse is truncated with a limited length and the obtained time–frequency maps using an SSWT are smoothed. The synthetic vertical seismic profiling data and the real stacked seismic data applications illustrate the effectiveness and the ability of the proposed method.
Wave simulation in absorptive media using decoupled fractional Laplacian wave equation has received widespread attention in recent years, largely due to its precise description of frequency independent $Q$ and easy attenuation compensation in seismic processing. With many algorithms to solve the fractional Laplacian, $k$ -space pseudo-spectral method is predominantly used in academia, where the computing facilities support fast Fourier transforms. However, its global nature prevents the parallelization and computational efficiency of the forward solver, especially for large-scale applications. We propose to solve viscoacoustic wave equation using domain decomposition. A local Fourier basis is constructed around the truncated area to improve the periodicity and smoothness of the decomposed wave information. After independently simulating in the subdomains, a pointwise patching procedure is applied to maintain the continuity of the wavefield between subdomains. Numerical experiments show that this new algorithm obtains high computational efficiency without compromising the numerical stability condition of the traditional pseudo-spectral method. This work becomes more attractive for seismic inversion and imaging problems by improving its parallelization.
Investigating the relations between land surface temperature (LST) and biophysical compositions can help the understanding of the surface biophysical process. However, there are still uncertainties in determining the impacts of biophysical compositions on LST due to the atmospheric effects. In this article, four atmospheric correction algorithms were used to correct 12 Landsat 8 images in Xi’an, Beijing, Wuhan, and Guangzhou, China, including the Atmospheric Correction for Flat Terrain (ATCOR2), Quick Atmospheric Correction (QUAC), Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH), and Second Simulation of Satellite Signal in the Solar Spectrum (6S). Then, geodetector was used to investigate the atmospheric correction differences in the spatial heterogeneity relationships between LST and normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and bare soil index (BSI). Results indicate that the selected composition factors were greatly improved after atmospheric correction, and the relations between LST and three factors were characterized by obvious atmospheric correction differences in four study areas. On the whole, the 6S algorithm performed the best in improving the factor values and impacting the spatial heterogeneity relations between LST and biophysical compositions, followed by FLAASH, QUAC, and ATCOR2 algorithms. Except for Wuhan, 6S, FLAASH, and QUAC algorithms significantly enhanced the correlation between LST and NDVI. However, all algorithms weakened the correlations between LST, NDVI, and BSI, except Guangzhou. These findings have been verified using the regression analysis. In addition, with geodetector, combinations of any two composition factors all had strongly enhanced impacts on LST, and a combination between NDVI and NDBI performed the strongest in most cases.
Prospective authors are requested to submit new, unpublished manuscripts for inclusion in the upcoming event described in this call for papers.
These instructions give guidelines for preparing papers for this publication. Presents information for authors publishing in this journal.
Presents the GRSS society institutional listings.
Presents the front cover for this issue of the publication.
Provides a listing of current staff, committee members and society officers.
Presents the table of contents for this issue of this publication.
The Greenhouse Gas Monitoring Instrument (GMI) is a short-wavelength infrared (SWIR) hyperspectral-resolution spectrometer onboard the Chinese satellite GaoFen-5 that uses a spatial heterodyne spectroscopy (SHS) interferometer to acquire interferograms. The GMI was designed to measure and study the source and sink processes of carbon dioxide and methane in the troposphere where the greenhouse effect occurs. In this study, the processing and geometric correction algorithms of the GMI Level 1 product (radiance spectrum) are introduced. The spectral quality and greenhouse gas (GHG) inversion ability of the Level 1 products are analyzed, and the results illustrate that the specifications meet the mission’s requirements. An initial evaluation of the resolution, signal-to-noise ratio (SNR), and stability of the radiance spectrum reveals that the overall function and performance are within the design objectives. A comparison between our Level 1 products and the theoretical spectrum shows that the root mean square (rms) of the residual is approximately 0.8%, and the Level 1 products of the GMI captured within five months after observations have good spectral stability characteristics (less than 0.005 cm−1 for Band 1, 0.003 cm−1 for Band 2, 0.002 cm−1 for Band 3, and 0.004 cm−1 for Band 4). These results demonstrate that the GMI payload and the processing algorithm all work well and reliably. Furthermore, based on the Level 1 products, a GHG retrieval experiment is carried out, and the results are compared with data from Total Column Carbon Observing Network (TCCON) stations. The initial comparison of the XCO2 results yields a value of 0.869 for ${R}^{2}$ (goodness of fit), 0.51 ppm for bias (mean of absolute error), and 0.53 ppm for ${sigma }$ (standard deviation of error). Similarly, the XCH4 comparison yields values of 0.841 for ${R}^{2}$ , 4.64 ppb for bias, and 4.66 ppb for $ {sigma}$ .