Atmos. Meas. techniques

Syndicate content
Combined list of the recent articles of the journal Atmospheric Measurement Techniques and the recent discussion forum Atmospheric Measurement Techniques Discussions
Updated: 1 day 14 hours ago

Performance Evaluation of MeteoTracker Mobile Sensor for Outdoor Applications

Mon, 01/22/2024 - 17:26
Performance Evaluation of MeteoTracker Mobile Sensor for Outdoor Applications
Francesco Barbano, Erika Brattich, Carlo Cintolesi, Abdul Ghafoor Nizamani, Silvana Di Sabatino, Massimo Milelli, Esther E. M. Peerlings, Sjoerd Polder, Gert-Jan Steeneveld, and Antonio Parodi
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-256,2024
Preprint under review for AMT (discussion: open, 0 comments)
The characterization of the urban microclimate starts with atmospheric monitoring using a dense array of sensors, to capture the spatial variations induced by the different morphology, land cover and presence of vegetation. To provide a new sensor for this scope, this paper evaluates the outdoor performance of a commercial mobile sensor. The results mark the sensor's ability to capture the same atmospheric variability as the reference, making it a valid solution for atmospheric monitoring.

Radar and environment-based hail damage estimates using machine learning

Fri, 01/19/2024 - 18:42
Radar and environment-based hail damage estimates using machine learning
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024, 2024
The paper addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilizes a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regard.

Evaluation of the first year of Pandora NO2 measurements over Beijing and application to satellite validation

Fri, 01/19/2024 - 18:42
Evaluation of the first year of Pandora NO2 measurements over Beijing and application to satellite validation
Ouyang Liu, Zhengqiang Li, Yangyan Lin, Cheng Fan, Ying Zhang, Kaitao Li, Peng Zhang, Yuanyuan Wei, Tianzeng Chen, Jiantao Dong, and Gerrit de Leeuw
Atmos. Meas. Tech., 17, 377–395, https://doi.org/10.5194/amt-17-377-2024, 2024
Nitrogen dioxide (NO2) is a trace gas which is important for atmospheric chemistry and may affect human health. To understand processes leading to harmful concentrations, it is important to monitor NO2 concentrations near the surface and higher up. To this end, a Pandora instrument has been installed in Beijing. An overview of the first year of data shows the large variability on diurnal to seasonal timescales and how this is affected by wind speed and direction and chemistry.

Multi-section reference value for the analysis of horizontally scanning aerosol lidar observations

Fri, 01/19/2024 - 18:39
Multi-section reference value for the analysis of horizontally scanning aerosol lidar observations
Juseon Shin, Gahyeong Kim, Dukhyeon Kim, Matthias Tesche, Gahyeon Park, and Youngmin Noh
Atmos. Meas. Tech., 17, 397–406, https://doi.org/10.5194/amt-17-397-2024, 2024
We introduce the multi-section method, a novel approach for stable extinction coefficient retrievals in horizontally scanning aerosol lidar measurements, in this study. Our method effectively removes signal–noise-induced irregular peaks and derives a reference extinction coefficient, αref, from multiple scans, resulting in a strong correlation (>0.74) with PM2.5 mass concentrations. Case studies demonstrate its utility in retrieving spatio-temporal aerosol distributions and PM2.5 concentrations.

Measurements of atmospheric C10–C15 biogenic volatile organic compounds (BVOCs) with sorbent tubes

Thu, 01/18/2024 - 18:39
Measurements of atmospheric C10–C15 biogenic volatile organic compounds (BVOCs) with sorbent tubes
Heidi Hellén, Toni Tykkä, Simon Schallhart, Evdokia Stratigou, Thérèse Salameh, and Maitane Iturrate-Garcia
Atmos. Meas. Tech., 17, 315–333, https://doi.org/10.5194/amt-17-315-2024, 2024
Even though online measurements of biogenic volatile organic compounds (BVOCs) are becoming more common, the use of sorbent tubes is expected to continue because they offer greater spatial coverage and no infrastructure is required for sampling. In this study the sorbent tube sampling method was optimized and evaluated for the determination of BVOCs in gas-phase samples. Tenax TA sorbent tubes were found to be suitable for the quantitative measurements of C10–C15 BVOCs.

Measuring diameters and velocities of artificial raindrops with a neuromorphic event camera

Thu, 01/18/2024 - 18:39
Measuring diameters and velocities of artificial raindrops with a neuromorphic event camera
Kire Micev, Jan Steiner, Asude Aydin, Jörg Rieckermann, and Tobi Delbruck
Atmos. Meas. Tech., 17, 335–357, https://doi.org/10.5194/amt-17-335-2024, 2024
This paper reports a novel rain droplet measurement method that uses a neuromorphic event camera to measure droplet sizes and speeds as they fall through a shallow plane of focus. Experimental results report accuracy similar to a commercial laser sheet disdrometer. Because these measurements are driven by event camera activity, this approach could enable the economical deployment of ubiquitous networks of solar-powered disdrometers.

Retrieval of aerosol optical depth over the Arctic cryosphere during spring and summer using satellite observations

Thu, 01/18/2024 - 18:39
Retrieval of aerosol optical depth over the Arctic cryosphere during spring and summer using satellite observations
Basudev Swain, Marco Vountas, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Soheila Jafariserajehlou, Sachin S. Gunthe, Andreas Herber, Christoph Ritter, Hartmut Bösch, and John P. Burrows
Atmos. Meas. Tech., 17, 359–375, https://doi.org/10.5194/amt-17-359-2024, 2024
Aerosols are suspensions of particles dispersed in the air. In this study, we use a novel retrieval of satellite data to investigate an optical property of aerosols, the aerosol optical depth, in the high Arctic to assess their direct and indirect roles in climate change. This study demonstrates that the presented approach shows good quality and very promising potential.

Regional validation of the solar irradiance tool SolaRes in clear-sky conditions, with a focus on the aerosol module

Wed, 01/17/2024 - 18:39
Regional validation of the solar irradiance tool SolaRes in clear-sky conditions, with a focus on the aerosol module
Thierry Elias, Nicolas Ferlay, Gabriel Chesnoiu, Isabelle Chiapello, and Mustapha Moulana
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-236,2024
Preprint under review for AMT (discussion: open, 0 comments)
In the solar energy application field, it is important to simulate solar resource anywhere on the globe. We conceived the SolaRes tool to provide precise and accurate estimates of solar resource estimates for any solar plant technology. The paper presents the validation of SolaRes, by comparing estimates with measurements made on two ground-based platforms. Little differences are found, validating SolaRes. Validation is performed in clear-sky conditions when aerosols are main factors.

Atmospheric H2 observations from the NOAA Global Cooperative Air Sampling Network

Tue, 01/16/2024 - 18:48
Atmospheric H2 observations from the NOAA Global Cooperative Air Sampling Network
Gabrielle B. Petron, Andrew M. Crotwell, John Mund, Molly Crotwell, Thomas Mefford, Kirk Thoning, Bradley D. Hall, Duane R. Kitzis, Monica Madronich, Eric Moglia, Don Neff, Sonja Wolter, Armin Jordan, Paul Krummel, Ray Langenfelds, and John D. Patterson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-4,2024
Preprint under review for AMT (discussion: open, 0 comments)
Hydrogen, (H2) is a gas in trace amounts in the Earth’s atmosphere with indirect impacts on climate and air quality. Renewed interest in H2 as a low or zero carbon source of energy may lead to increased production, uses and supply chain emissions. NOAA measurements starting in 2009 were reprocessed to be on an internationally recognized H2 calibration scale. Time records from 70 sites in mostly remote locations complement other datasets to study H2 sources and sinks and their variability.

Cloud optical and physical properties retrieval from EarthCARE multi-spectral imager: the M-COP products

Tue, 01/16/2024 - 18:39
Cloud optical and physical properties retrieval from EarthCARE multi-spectral imager: the M-COP products
Anja Hünerbein, Sebastian Bley, Hartwig Deneke, Jan Fokke Meirink, Gerd-Jan van Zadelhoff, and Andi Walther
Atmos. Meas. Tech., 17, 261–276, https://doi.org/10.5194/amt-17-261-2024, 2024
The ESA cloud, aerosol and radiation mission EarthCARE will provide active profiling and passive imaging measurements from a single satellite platform. The passive multi-spectral imager (MSI) will add information in the across-track direction. We present the cloud optical and physical properties algorithm, which combines the visible to infrared MSI channels to determine the cloud top pressure, optical thickness, particle size and water path.

Machine learning approaches for automatic classification of single-particle mass spectrometry data

Tue, 01/16/2024 - 18:39
Machine learning approaches for automatic classification of single-particle mass spectrometry data
Guanzhong Wang, Heinrich Ruser, Julian Schade, Johannes Passig, Thomas Adam, Günther Dollinger, and Ralf Zimmermann
Atmos. Meas. Tech., 17, 299–313, https://doi.org/10.5194/amt-17-299-2024, 2024
This research aims to develop a novel warning system for the real-time monitoring of pollutants in the atmosphere. The system is capable of sampling and investigating airborne aerosol particles on-site, utilizing artificial intelligence to learn their chemical signatures and to classify them in real time. We applied single-particle mass spectrometry for analyzing the chemical composition of aerosol particles and suggest several supervised algorithms for highly reliable automatic classification.

Absolute radiance calibration in the UV and visible spectral range using atmospheric observations during twilight

Tue, 01/16/2024 - 18:39
Absolute radiance calibration in the UV and visible spectral range using atmospheric observations during twilight
Thomas Wagner and Jānis Puķīte
Atmos. Meas. Tech., 17, 277–297, https://doi.org/10.5194/amt-17-277-2024, 2024
We present a radiance calibration method based on the comparison of measurements and radiative transfer simulations of the zenith-scattered sun radiance during twilight. Cloud-free conditions are required. The method can be applied to measurements in the filed, and no laboratory measurements are required. The accuracy is estimated to range from about 4 % at 340 nm to about 10 % at 700 nm.

Assessing sampling and retrieval errors of GPROF precipitation estimates over the Netherlands

Mon, 01/15/2024 - 18:48
Assessing sampling and retrieval errors of GPROF precipitation estimates over the Netherlands
Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 247–259, https://doi.org/10.5194/amt-17-247-2024, 2024
Algorithms merge satellite radiometer data from various frequency channels, each tied to a different footprint size. We studied the uncertainty associated with sampling (over the Netherlands using 4 years of data) as precipitation is highly variable in space and time by simulating ground-based data as satellite footprints. Though sampling affects precipitation estimates, it doesn’t explain all discrepancies. Overall, uncertainties in the algorithm seem more influential than how data is sampled.

Airborne observation with a low-cost hyperspectral instrument: retrieval of NO2 vertical column densities (VCDs) and the satellite sub-grid variability over industrial point sources

Mon, 01/15/2024 - 18:48
Airborne observation with a low-cost hyperspectral instrument: retrieval of NO2 vertical column densities (VCDs) and the satellite sub-grid variability over industrial point sources
Jong-Uk Park, Hyun-Jae Kim, Jin-Soo Park, Jinsoo Choi, Sang Seo Park, Kangho Bae, Jong-Jae Lee, Chang-Keun Song, Soojin Park, Kyuseok Shim, Yeonsoo Cho, and Sang-Woo Kim
Atmos. Meas. Tech., 17, 197–217, https://doi.org/10.5194/amt-17-197-2024, 2024
The high-spatial-resolution NO2 vertical column densities (VCDs) were measured from airborne observations using the low-cost hyperspectral imaging sensor (HIS) at three industrial areas in South Korea with the newly developed versatile NO2 VCD retrieval algorithm apt to be applied to the instruments with volatile optical and radiometric properties. The airborne HIS observations emphasized the intensifying satellite sub-grid variability in NO2 VCDs near the emission sources.

Measurement uncertainties of scanning microwave radiometers and their influence on temperature profiling

Mon, 01/15/2024 - 18:48
Measurement uncertainties of scanning microwave radiometers and their influence on temperature profiling
Tobias Böck, Bernhard Pospichal, and Ulrich Löhnert
Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024, 2024
In this study, measurement uncertainties from microwave radiometers and their impact on temperature profiling are analyzed. These measurement uncertainties include horizontal inhomogeneities of the atmosphere, pointing errors or tilts of the instrument, physical obstacles which are in the line of sight of the radiometer, and radio frequency interferences. Impacts on temperature profiles from these uncertainties are usually small in real-life scenarios and when obstacles are far enough away.

A new power-law model for μ–Λ relationships in convective and stratiform rainfall

Mon, 01/15/2024 - 18:48
A new power-law model for μ–Λ relationships in convective and stratiform rainfall
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 17, 235–245, https://doi.org/10.5194/amt-17-235-2024, 2024
A common method to retrieve important information about the microphysical structure of rain (DSD retrievals) requires a constrained relationship between the drop size distribution parameters. The most widely accepted empirical relationship is between μ and Λ. The relationship shows variability across the different types of rainfall (convective or stratiform). The new proposed power-law model to represent the μ–Λ relation provides a better physical interpretation of the relationship coefficients.

Research of low-cost air quality monitoring models with different machine learning algorithms

Mon, 01/15/2024 - 17:14
Research of low-cost air quality monitoring models with different machine learning algorithms
Gang Wang, Chunlai Yu, Kai Guo, Haisong Guo, and Yibo Wang
Atmos. Meas. Tech., 17, 181–196, https://doi.org/10.5194/amt-17-181-2024, 2024
A low-cost multi-parameter air quality monitoring system (LCS) based on different machine learning algorithms is proposed. The LCS can measure particulate matter (PM) and gas pollutants simultaneously. The performance of the different algorithms (RF, MLR, KNN, BP, GA-BP) with the parameters such as R2 and RMSE are compared and discussed. These measurements indicate the LCS based on the machine learning algorithms can be used to predict the concentrations of PM and gas pollution.

Drone CO2 Measurements During the Tajogaite Volcanic Eruption

Mon, 01/15/2024 - 17:14
Drone CO2 Measurements During the Tajogaite Volcanic Eruption
John Ericksen, Tobias Fischer, G. Matthew Fricke, Scott Nowicki, Nemesio Pérez, Pedro Hernández Pérez, Eleazar Padrón González, and Melanie Moses
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-229,2024
Preprint under review for AMT (discussion: open, 0 comments)
Volcanic eruptions emit significant quantities of carbon dioxide (CO2) to the atmosphere. We present a new method for directly determining the CO2 emission from a volcanic eruption using om La Palma Island, Spain using an unpiloted areal vehicle (UAV). We also collected samples of the emitted CO2 and analyzed their isotopic composition. Together with the emission rate the isotopic data provide valuable information on the state of volcanic activity and the potential evolution the eruption.

Comparisons and quality control of wind observations in a mountainous city using wind profile radar and the Aeolus satellite

Fri, 01/12/2024 - 17:14
Comparisons and quality control of wind observations in a mountainous city using wind profile radar and the Aeolus satellite
Hua Lu, Min Xie, Wei Zhao, Bojun Liu, Tijian Wang, and Bingliang Zhuang
Atmos. Meas. Tech., 17, 167–179, https://doi.org/10.5194/amt-17-167-2024, 2024
Observations of vertical wind in regions with complex terrain are essential, but they are always sparse and have poor representation. Data verification and quality control are conducted on the wind profile radar and Aeolus wind products in this study, trying to compensate for the limitations of wind field observations. The results shed light on the comprehensive applications of multi-source wind profile data in complicated terrain regions with sparse ground-based wind observations.

Preface to the inter-journal special issue “RUSTED: Reducing Uncertainty in Soluble aerosol Trace Element Deposition”

Fri, 01/12/2024 - 17:14
Preface to the inter-journal special issue “RUSTED: Reducing Uncertainty in Soluble aerosol Trace Element Deposition”
Morgane M. G. Perron, Susanne Fietz, Douglas S. Hamilton, Akinori Ito, Rachel U. Shelley, and Mingjin Tang
Atmos. Meas. Tech., 17, 165–166, https://doi.org/10.5194/amt-17-165-2024, 2024
The solubility of vital and toxic trace elements delivered by the atmosphere determines their potential to fertilise or limit ocean productivity. A poor understanding of aeolian trace element solubility and the absence of a standard method to define this parameter hinder accurate model representation of the impact of atmospheric deposition on ocean productivity in a changing climate. The inter-journal special issue aims at “Reducing Uncertainty in Soluble aerosol Trace Element Deposition”.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer