Geophysical Journal International

Syndicate content
Updated: 1 day 16 hours ago

Monitoring groundwater variations with ambient noise correlations in Beijing

Fri, 09/26/2025 - 00:00
SummaryWe conduct a seismological monitoring study for groundwater fluctuations within the 12-years period of 2012-2023 in Beijing using relative seismic velocity changes (dv/v) from continuous ambient noise data. Our measured dv/v time series agree with groundwater level changes observed from groundwater wells and reveal significant characteristics on hydrological and other environmental changes. The most intriguing feature is a dv/v increase of ∼0.02% in winter, which is interpreted as the imprint of frozen ground perhaps associated with decoupling between air pressure and groundwater. In addition, a rapid reduction of dv/v during the second half of 2021 indicates the development of a groundwater recharging event resulting from heavy rainfall. The long-term trends of dv/v suggest a groundwater rebound from 2018 to 2023 over the study area, which we attribute to increased precipitation, recharging due to the South-to-North Water Transfer Project, and reduced irrigation.

A New Kinematic Rupture Generation Technique and Its Application

Fri, 09/26/2025 - 00:00
SummaryWe present a novel method for generating kinematic rupture models for near-source broadband ground motion simulations. Our approach constructs realistic rupture-parameter distributions for slip, rupture velocity and rise time using Von Karman (VK) fields. To more realistically model the slip pattern, we propose rescaling the VK field to follow a truncated exponential distribution rather than a Gaussian, following previous findings on inversion results. For rupture propagation, we initiate the rupture from slip-constrained hypocenter locations, which is crucial for accurately capturing directivity effects. Finally, to characterize the local slip-rate evolution at each computational point on the fault, we propose to employ the regularized Yoffe functions to which small-scale variations are added using 1D VK-fields whose properties are constrained from a database of dynamic rupture simulations. The statistical properties of these fields are calibrated using a database of dynamic rupture simulations, ensuring appropriate high frequency radiation from the generated rupture.Our rupture generator produces kinematic source descriptions to simulate ground motions that successfully reproduce the mean and standard deviation from ground motion models (GMM) for Mw 6.0-7.0 earthquakes. Additionally, our generator allows for the integration of low-frequency source inversions and complements the high frequency radiation of a seismic rupture with physics-constrained stochastic variations. Our broadband pseudo-dynamic kinematic rupture generator facilitates and possibly improves the simulation of realistic high-frequency ground motions to advance seismic hazard analysis.

Heterogeneity parameters inversion from the energy of seismic scattering waves: verification from physical modeling experiments

Thu, 09/25/2025 - 00:00
SummarySeismic scattering waves in random media are usually regarded as noise in conventional seismic imaging, inversion and interpretation. However, the spatial and temporal variation of the scattering energy depends on the stochastic properties of the random media. The extraction of heterogeneity information such as the correlation scale and fluctuation strength from seismic scattering waves remains a challenge. These parameters are inverted from real scattering data by fitting the synthetic envelopes to the observed seismic envelopes. The synthetic envelopes are usually computed using the Monte-Carlo radiative transfer (MCRT) method. However, physical verification of the stochastic parameter inversion based on MCRT theory has not been realized although it is believed to be correct. To this end, we conducted a physical modelling experiment using an ultrasonic acquisition system and recorded the transmitted wavefields through an artificial heterogeneous medium. In this paper, the elastic MCRT method was used to simulate the energy transport, and the correlation length and fluctuation strength of the artificial heterogeneous medium were inverted with a revised objective function, which can better balance the energy level of direct waves and scattering waves in the inversion process. The inversion results of the correlation scale and fluctuation strength match well with true values, suggesting that this method is accurate and reliable. A combination of our physical experiments and the MCRT theory gives strong proof that this inversion method is correct. Therefore, it can be used with confidence to estimate the properties of the heterogeneities from the ‘undesired’ scattering waves, both in the oil/gas exploration and earth structure investigation.

A novel fast sweeping method for computing the attenuation operator t* in absorbing media

Thu, 09/25/2025 - 00:00
SummaryThe attenuation operator t* represents the total path attenuation and characterizes the amplitude decay of a propagating seismic wave. Calculating t* is typically required in seismic attenuation tomography. Traditional methods for calculating t* require determining the ray path explicitly. However, ray tracing can be computationally intensive when processing large datasets, and conventional ray tracing techniques may fail even in mildly heterogeneous media. In this study, we propose a modified fast sweeping method (MFSM) to solve the governing equation for t* without explicitly calculating the ray path. The approach consists of two main steps. First, the traveltime field is calculated by numerically solving the eikonal equation using the fast sweeping method. Second, t* is computed by solving its governing equation with the MFSM, based on the discretization of the gradient of t* using an upwinding scheme derived from the traveltime gradient. The MFSM is rigorously validated through comparisons with analytical solutions and by examining t* errors under grid refinement in both simple and complex models. Key performance metrics, including convergence, number of iterations, and computation time, are evaluated. Two versions of the MFSM are developed for both Cartesian and spherical coordinate systems. We demonstrate the practical applicability of the developed MFSM in calculating t* in North Island, and discuss the method’s efficiency in estimating earthquake response spectra.

Iterative downward continuation of the geomagnetic field through a three-dimensional conducting mantle

Thu, 09/25/2025 - 00:00
SummaryVarious methods for determining the magnetic field at the core-mantle boundary (CMB) from the observed geomagnetic core field have been explored over recent decades. These include the harmonic downward continuation of surface data and the stabilised iterative upward continuation. The instability of the inverted poloidal magnetic field at the CMB for a radial conductivity structure is complemented by the non-uniqueness of determining the toroidal magnetic field at the CMB for a laterally inhomogeneous conductivity model. We reformulate this unstable and non-unique inverse problem as an iterative upward continuation approach, in which the magnetic field at the CMB is successively updated. The uniqueness of the inverse solution is ensured by the initial choice of the toroidal magnetic field at the CMB, while the stability is achieved by stopping the iterations once the desired tolerance is reached between the spectral index of the updated solution and that obtained from numerical geodynamo simulations. We consider two significantly different radial electrical conductivity models of the lower mantle, each with conductance near 108 S: conductivity model A, based on external electromagnetic sounding, which includes a significant conductivity increase in a 10 km thick layer above the CMB, and conductivity model B, characterized by a gradual conductivity increase determined from the Voigt-Reuss-Hill average of the bridgmanite-ferropericlase aggregate, with an additional conductivity increase in the 300 km thick D” layer associated with post-perovskite. Models A and B bracket the lower and upper bounds of conductivity structures derived from thermal and compositional constraints below 1600 km depth. We find that the differences between the magnetic field components at the CMB inverted for models A and B are approximately 1-2 per cent of the total field. To explore lateral variations, we construct a synthetic model of the Pacific and African superplumes by simplifying their geometric shapes, estimating the temperature increase within the plumes and allowing mantle mineral activation energies to vary only with temperature. Our results show that, in the regions of the superplumes, the poloidal and toroidal magnetic fields at the CMB change by approximately 12,000 nT and 2,500 nT, respectively. The changes in the horizontal poloidal field at the CMB are comparable in magnitude to those resulting from substituting model A with model B. However, the changes in the radial field inverted for the three-dimensional plume conductivity model are significantly larger than those arising from replacing model A with model B.

Geologically Guided Ambient Noise Tomography Inversion with 3D Interface Structures: Methodology and Application to a Gold Mine Region in China

Mon, 09/22/2025 - 00:00
SummarySeismic surface wave tomography, particularly when leveraging dense array data, has become a widely used method for investigating shallow subsurface velocity structures. The shallow structures are usually characterized by rapid seismic velocity changes (i.e. seismic interfaces) due to variations in rock properties, sedimentary environments, or tectonic features. However, the commonly used grid-based parameterization of the velocity field in surface wave tomography often struggles to accurately constrain such interface geometries. In addition, traditional surface wave inversion methods typically rely on 1D inversion at individual stations using dispersion curves, followed by interpolation to construct 2D or 3D models. This approach can sometimes introduce spurious features and reduce model reliability. To address these limitations, we propose a geological and level-set parameterization approach for surface wave tomography, allowing for the explicit consideration of interface structures in inversion. This method is then combined with the Ensemble Kalman Inversion to optimize subsurface structures. Synthetic tests demonstrate that integrating 3D interface parameterization in tomography significantly enhances the reliability of the velocity model and the recovery of interface geometries. Applying this approach to the Woxi gold mine region in China yielded inversion results that closely align with existing borehole data. This study highlights the advantages of level-set parameterization for 3D interface imaging in seismic tomography, underscoring its potential in subsurface mineral exploration.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer