Geomagnetism and Aeronomy

Syndicate content
The latest content available from Springer
Updated: 22 hours 48 min ago

Study of Solar Wind Influences on Earth’s Magnetic Field

Thu, 01/09/2025 - 00:00
Abstract

In this paper, we studied the impact of solar activity, especially proton density, He++/H+ ratio and temperature of solar wind, on the geomagnetic field and thereby on earth’s climate. The verified data of these indices are collected from the official websites: wdc.kugi.kyoto-u.ac.jp and www.srl.caltech.edu/ace. Using the data values, both the indices are analyzed and studied to explore the link between solar activity and geomagnetic field. The magnetic field is irregular with negative and positive peaks and at the same time it shows the uniformity with the irregularities of solar wind plasma parameters. It has been observed that solar wind plasma has a significant influence on the intensity of magnetic field of earth and this correlation can be used for weather forecasts and climatic studies in the future.

Study of Total Electron Content Variations over the Ethiopia Region Using Kriging Technique

Thu, 01/09/2025 - 00:00
Abstract

This study investigates the vertical electron content (VTEC) variations and depletions using two years of Global Positioning System (GPS), Total Electron Content (TEC) data from 2012 and 2013. The data, gathered at altitudes between 5° and 15° and longitudes between 34° and 48°, was specifically focused on quiet days and analyzed from nine GPS stations. Employing a spherical model and standard kriging interpolation techniques, the research explored hourly, diurnal, and seasonal fluctuations of VTEC over the two-year period. The spherical model demonstrated high efficacy in estimating data with short lag distances, effectively capturing hourly and daily VTEC fluctuations. Diurnal VTEC variations showed a consistent pattern: increasing from dawn, peaking at 1200 UT, and declining to a minimum after 1800 UT. The peak in diurnal variation was most pronounced at Debark, with similar patterns observed at other stations, reflecting consistent ionospheric behaviors due to geomagnetic conjugcy. A strong correlation was observed between the alignment of the solar terminator and magnetic meridian during equinox seasons and VTEC variation and depletion, with the most significant effects during equinoctial seasons. The study identified a distinct north-south gradient in VTEC within the region, with levels exceeding 65 TECU in the north and around 40 TECU in the south, depending on ionospheric conditions. Nighttime VTEC levels typically decreased to approximately 5 TECU. The spatial distribution analysis of TEC revealed a pronounced maximum concentration in the northeastern sector, contrasting with a minimal concentration in the southwestern sector. This research provides valuable insights into the spatial and temporal behaviors of VTEC, enhancing our understanding of ionospheric dynamics within the specified region.

Fractal Analysis of VLF Electric Field Changes Observed at Mathura in Relation to Moderate Shallow Earthquakes (M = 4.9–5.6, depth < 17 Km) Happened in India and Around

Thu, 01/09/2025 - 00:00
Abstract

Fractal analysis of VLF electric field data obtained by using vertical antenna located at Chaumuhan, Mathura station (Lat., 27.5° N, Long., 72.68° E) has been carried out using Higuchi method for investigating the impact of moderate shallow earthquakes (M = 4.9–5.6, depth 4.44–16.7 Km) that occurred during February 1, 2016 to October 31, 2016 (excluding April 2016) on the fractal dimension of VLF data. The results of the analysis show that daily values of fractal dimension vary much above and below the monthly mean during the period of observations, 1–30 days before and 1–30 days after the onset of the quakes considered in the present study. The ranges of reductions and enhancements in fractal dimension from the monthly mean are 0.05–0.33 and 0.054–0.43 respectively while the percentage ranges of reductions and enhancements in its daily variation are 3.0–23.21 and 2.81–19.88% respectively. The observed variations in fractal dimension have also been studied in the light of other expected sources like, magnetic storms, lightning activity, local building noises, and instrumental errors which may affect the fractal dimension of the VLF data. It is noticed that the observed variations of fractal dimensions do not correspond to these spurious sources considered. Further, model describing the genesis of VLF emissions in preparatory zones of the impending seismic events and their mechanism of transmission to the observing station have also been discussed.

Impact of Ionospheric Electron Density on Second-Order Ionospheric Error at L5 and S1 Frequencies Using Dual-Frequency NavIC System

Thu, 01/09/2025 - 00:00
Abstract

Satellite navigation systems are used for positioning purposes, however to calculate an accurate position, it is crucial to take into account all possible sources of error. The Ionosphere is the primary cause of the positional error. There is a lot of research into first-order ionospheric error estimation and removal. Due to the growing demand for positioning precision across a wide range of applications, significant research has been done over the last two decades to ascertain the impact of second-order ionospheric error (SOIE). However, very less research has been identified that examines the relationship between SOIE and the receiver’s geographic location and total electron content (TEC). Achieving the desired millimeter/centimeter level positional accuracy in these regions requires the study of a realistic diurnal and seasonal variability of SOIE because the behavior of ionospheric TEC in equatorial and low-latitude regions (Indian region in this case) is highly dynamic. Additionally, NavIC (Navigation with Indian Constellation), an Indian satellite navigation system, uses carrier frequencies, namely L5 and new frequency S1, as opposed to GPS L1 and L2, which presents a fresh chance to investigate the effects of SOIE on these frequencies. This research may serve as a benchmark for systems like NavIC that are using L5 and new S-band frequencies for satellite signal transmission, space weather monitoring, and ionosphere abnormalities research. To comprehend various elements of its seasonal properties, this research estimates and analyses SOIE. Data from the SOIE were examined for 12 months, from May 2018 to February 2019, to analyze the diurnal and seasonal fluctuation. It has been noted that seasonal and diurnal fluctuations have a substantial impact on the SOIE. In comparison to the winter months, the SOIE levels are higher in the summer and equinoctial months. Although the SOIE peak levels are similar during the equinoctial and summer months, a higher midnight value and a slowly declining rate have been noted. At L5 frequency, there is a significant seasonal fluctuation in SOIE (–1.1 to –2.84 cm), whereas at S1 shows just a little seasonal variation (–0.1 to –0.3 cm) throughout the year. Additionally, geostationary orbit (GEO) satellites are discovered to be more suitable for the analysis of SOIE than satellites in geosynchronous orbit (GSO), and they might also be employed for ionospheric studies.

Relationship of Asymmetries in the Distribution of Solar Tracer Activity and Generation of the Solar Magnetic Field

Sun, 12/01/2024 - 00:00
Abstract

The cause of the asymmetry in the sunspot distribution in the northern and southern hemispheres of the Sun at the end of the Maunder Minimum is studied. It is demonstrated that the expected asymmetry of generation sources is insufficient for such an explanation. To study the influence of asymmetry of generation sources, numerical simulation is used, based on modifications to the Parker model.

Period of the “Envelope” of the Maximum of Reliable Cycles of a Series of Wolf Numbers and the Image of Increased/Decreased Solar Activity Epochs

Sun, 12/01/2024 - 00:00
Abstract

The presence of groups of cycles with larger/smaller amplitudes and alternation of these groups suggests the existence of a long-period solar activity (SA) cycle with epochs of increased/decreased activity. Since SA and its changes significantly influence climate and humans across the near-Earth space, it is reasonable to have a portrait (template) that reflects the main characteristics of these groups, making it possible to qualitatively and semiquantitatively assesses of SA epochs in the past and future. In the study, the properties of epochs SA of maximum/minimum are determined by the characteristics of reliable cycles 10–23 (14 cycles, a total period of 153 years, and the relationship between the amplitude of the cycles and their duration is taken into account). The formation of the pattern is based on the “envelope” of the maxima of these cycles. The possibility of correcting the Dalton minimum is discussed and a long-term forecast of SA is constructed.

Solar UVB Radiation as an Exposure Factor Space Climate on the Spread of Large-Scale Epidemics

Sun, 12/01/2024 - 00:00
Abstract

The results of analyzing the relationship between large-scale epidemics (pandemics) caused by the Ebola, influenza AH1N1, and AH7N9 viruses and the MERS-CoV coronavirus with global solar factors for the period from 2008 to 2019 (24th cycle of solar activity) are presented. A variable change in the annual values of pandemic cases has been established, corresponding to the regular course of F10.7 cm (r ~ 0.65), MF (r ~ 0.85) and λ315 nm (r ~ 0.83) in the 24th SA cycle. It was concluded that the dynamics of the spread of pandemics depend on temporary changes in UVB radiation power, in particular, at the boundary of the spectral bactericidal efficiency curve (λ315 nm).

Constraints on the Parameters of Solar Superflares Based on Cosmogenic Radiocarbon Data in the Lunar Regolith

Sun, 12/01/2024 - 00:00
Abstract

Samples with a short-term (less than a year) increase in the content of the radioactive isotope 14C were recently discovered in tree rings, in four cases accompanied by concentration growth of 10Be and 36Cl in other natural archives. Most publications suggest that this increase is due to a sharp increase in the flux of solar cosmic rays (SCR) at the boundary of the Earth’s atmosphere caused by solar superflares. Other reasons may be connected with the flux rise of the galactic cosmic rays (GCR) as the Solar System passes through a dense interstellar cloud, or a galactic gamma-ray burst. To reconcile the amount of 14C with cosmogenic isotopes 10Be and 36Cl formed in the atmosphere, it is necessary to assume that the proton spectra in such superflares should be harder than most modern experimentally recorded ones. Measurements of the 14C content in lunar regolith cores returned by the Apollo 15 expedition showed a significant drop in radiocarbon concentration to a depth of 5 g/cm2, followed by an increase to maximum values at about 50 g/cm2 then a decrease. At shallow depths, the contribution from low-energy SCRs predominates, and at large depths, the contribution from high-energy GCRs prevails. Analysis of the depth profile of the 14Cconcentration makes it possible to establish SCR fluxes and spectra over several radiocarbon half-lives (10 000–20 000 years) and highlight the possible contribution of hypothetical superflares. Our analysis shows that the hypothesis of solar superflares worsens the agreement with the observed depth variations of 14C in the lunar regolith.

The Link between Lengths and Amplitudes of the Eleven-Year Cycle for the Millennium Sunspot Index Series

Sun, 12/01/2024 - 00:00
Abstract

In the recent work by Usoskin et al. (2021) a series of annual sunspot indices for the years 971 to 1899 was reconstructed. Using this series, we study behavior of the “length-amplidude rule” (LAR), according to which the mininum-to-minimum length of a given 11-year solar cycle anticorrelates with the amplitude of the next one. We show that approximately since the 14th century two regimes exist in the series: I) epochs of normal activity, when the LAR is observed; II) epochs of the Maunder, Spörer and Wolf grand minima, when there were no significant links between the amplitudes and lengths of the 11-year cycles. Before the 14th century the LAR and its relation to the level of global activity of the Sun is less pronounced, which, probably, is a consequence of inaccuracies of the 11-year cycle parameters determination in this epoch.

Preflare Fluctuations of Radio Emission from Active Regions of the Sun According to Observations at RSTN

Sun, 12/01/2024 - 00:00
Abstract

For the first time, several flare events are analyzed based on multifrequency observations using the Radio Solar Telescope Network. The purpose of the analysis is to identify signs of flare preparation. In all considered cases, preflare quasi-periodic fluctuations (QPFs) of radio emission were detected. The duration of preflare wavetrains is 6–20 min. Wavetrains consist of 3–5 pulses. QPFs at lower frequencies (200–600 MHz) begin later than those at high frequencies by 2–6 min. QPFs at frequencies of 2695–8800 MHz occur almost synchronously. The highest amplitude of QPFs is observed at a frequency of 4995 MHz. The observed QPFs can be explained by the force-free magnetic rope model (Solov’ev and Kirichek, 2023).

Study of Coronal Jets

Sun, 12/01/2024 - 00:00
Abstract

The results of observations of coronal jets on the Sun are briefly reviewed. Data on jets of different types (jets, jetlets) were collected. Their properties are considered, such as lifetime, length, width, velocities, coupling to the magnetic field, and their putative role in hot plasma and energy transfer into the corona. Observational data obtained with ground-based and space telescopes were used. There is growing evidence that jets play a key role in imparting mass to the corona and solar wind and can provide sufficient energy to power the solar wind (see, e.g., (Tian et al., 2014)). Modern observations by the Parker Solar Probe and Solar Orbiter spacecraft will contribute to the understanding of solar jets and related phenomena.

Coronal Plasma Heating by Large-Scale Electric Сurrents: High-Temperature Structures in the Sun’s Corona during Quiet Temporal Intervals before Flares and during and after Flare Events

Sun, 12/01/2024 - 00:00
Abstract

The paper studies the dynamics of high-temperature structures (with a temperature of T ≥ 10 MK) in the corona above active regions (ARs) in quiet temporal intervals, before solar flares of high X-ray classes and during and after individual flare events, and determines the role of electric currents in heating the coronal plasma. In the study, we used data from the Solar Dynamics Observatory (SDO) spacecraft: magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) instrument (used to detect and calculate the magnitude of large-scale electric current) and photoheliograms of the solar corona in ultraviolet radiation 94, 131, 171, 193, 211, and 335 Å channels of the Atmospheric Imaging Assembly (AIA/SDO) instrument (used to construct maps of temperature distribution in the corona above the AR, detect high-temperature structures, and study their evolution). The objects of the study were ARs NOAA 12 192 (October 2014) and 12 371 (June 2015) of the 24th solar activity cycle, which have high absolute values of large-scale electric current. The following results were obtained: (1) The discovered high-temperature structures represent a channel of large-scale electric current at coronal heights. (2) High-temperature structures in the corona above the studied ARs exist over a long (several days) time interval, which indicates the presence of a constant source of plasma heating; the temperature of the structures, the area they occupy, and their spatial orientation change over time. (3) High-temperature structures in the corona consist of individual elements with a cross section of ~108 cm. (4) Several hours before the X-ray flares of classes M and X datected in the studied ARs during their monitoring time, a significant decrease in the area occupied by high-temperature structures was observed, and in some cases, a decrease in temperature to 3–5 MK, which indicates a change in the physical conditions in the corona before powerful flares.

Mid-Term Solar Activity Oscillations and Geomagnetic Field Variations

Sun, 12/01/2024 - 00:00
Abstract

In solar activity, in addition to the 11-year Schwabe cycle, there are also shorter-period oscillations in the range from 27 days to 11 years, which are called mid-term oscillations. In our study, we identify quasi-6-year oscillations in solar activity expressed by the sunspot number SN using wavelet analysis and investigate the characteristics of these variations during 1750–2020. The analysis shows that the ~6-year cycle in SN is a real independent oscillation. A similar quasi-6-year periodicity has been found in the monthly mean records of geomagnetic field components at the Sitka and Honolulu observatories during 1910–2020. It was found that the variations of the geomagnetic field in the range of 5–6-year periods can be caused by the effect of variations in solar activity in the same frequency range. In addition, in the SN series and geomagnetic field variations, a quasi-biennial cycle is well observed, the amplitude of which in some time intervals exceeds the amplitude of the cycle with a period of 5–6 years.

Solar Flares in White Light and Heating of the Solar Photosphere by Alfvén Waves

Sun, 12/01/2024 - 00:00
Abstract

Alfvén waves with periods of a few seconds excited in solar coronal magnetic loops during flare energy release can lead to effective heating of the plasma in the lower atmosphere of the Sun, which is responsible for continuous optical radiation. Meanwhile, the question of the propagation time of these modes from the corona to the photosphere has not yet been considered in detail. Based on solar atmospheric model by Avrett and Loeser (2008), for different values of background magnetic fields, taking into account their height dependence, the estimates of the propagation time of Alfvén waves from the corona to the photosphere were obtained. The characteristic values exceeding several minutes and impose certain restrictions on wave heating of the lower atmosphere of the Sun. The implications of the results are discussed.

Current Solar Cycle 25 on the Eve of the Maximum Phase

Sun, 12/01/2024 - 00:00
Abstract

Since January 2020, the current solar cycle 25 has begun. Its development in the first four years, according to the Gnevyshev–Ohl rule, brought it into the family of medium-sized cycles. In November 2023, it entered the maximum phase. Therefore, the maximum of the current cycle should take place no later than June 2024 with the expected value of the relative number of sunspots W* = 100+/–10 (150+/–15 in the V2 system). The minimum of the current cycle should be expected in the first half of 2031, and the course of its development on the growth branch shows that it fits into the characteristics of average solar cycles of the epoch of lowered solar activity on the growth branch with its own features. This confirms the stability of the scenario of solar cyclicity for the last ~190 years, which provides for a change in the level of sunspot activity in different epochs of solar activity, increased or lowered, with clearly distinguished transition periods, as a consequence of regular changes in the mode of generation of the total solar magnetic field, with a duration of ~5 cycles.

Fluxgate Magnetometers for Geophysical and Special Studies Based on a Universal Measuring Module (Review of Developments)

Sun, 12/01/2024 - 00:00
Abstract

The work describes the design of a measurement module (fluxgate compass) and the creation of various magnetometer devices on its basis. These devices are intended for geomagnetic and special works in various conditions and environments both for stationary observation points and for expeditions.

Terdiurnal Signature of the Critical Frequency of the Sporadic E Layer in Mid-Latitude Regions Based on Ionosonde Observations

Sun, 12/01/2024 - 00:00
Abstract

Ionospheric sporadic E layers are very thin, but with a much higher electron density than normal E regions that occur at altitudes of about 90–130 km. Vertical wind shear is considered the main source of mid-latitude sporadic E layer formation, which leads to periodicity, such as 24-h, 12-h, and so on. In this paper, a time series analysis of the critical frequency of the sporadic E layer (foEs) observed by an ionosonde is performed at seven stations (spanning about 37° N–51° N and 29° S–67° S) to investigate the terdiurnal signature in it. Except for the already known 24-h and 12-h periodicities features which are related to diurnal and semidiurnal tides, new findings are also obtained. The 8-h periodicity is a regular and repeatable feature at high mid-latitude regions of both hemispheres. The 8-h periodicity is more prominent at mid-latitudes (~50° N and ~60° S) during the winter and spring months of the hemisphere, which agrees with the terdiurnal tide features. It also shows that the amplitude of the 8-h periodicity is equivalent to the 12-h periodicity component in summer and autumn and almost the same as the 24-h periodicity component in winter under certain circumstances. This indicates that the 8-h periodicity should be taken into consideration for sporadic E layer modeling.

Dynamics of the Weddel Sea Anomaly and Main Ionospheric Trough in the Southern Summer Hemisphere

Sun, 12/01/2024 - 00:00
Abstract

The impact of the Weddell Sea Anomaly on the structure of the nightside ionosphere in the summer Southern Hemisphere is considered in detail. For this, data from the CHAMP satellite were used in January 2003 under high solar activity and in January 2008 under low solar activity. The data relate to the local time interval 02−04 LT, when the increase in electron density due to the formation of the anomaly is the strongest. At longitudes of 60°−180° E under high solar activity and 0°–210° E under low solar activity, where there is no anomaly, the main ionospheric trough is observed. The plasma peak in the nightside ionosphere associated with formation of the anomaly reaches 6 MHz under low solar activity and 10 MHz under high solar activity. The strongly developed plasma peak decreases sharply to high latitudes at the equatorward boundary of auroral diffuse precipitation, which corresponds to the plasmapause. When the anomaly is weakly developed, the contribution of diffuse precipitation becomes noticeable, so that the plasma peak expands poleward due to this precipitation. Poleward of the anomaly, the high-latitude trough is usually observed at latitudes of the auroral oval. A well-defined electron density minimum is often formed equatorward of the Weddell Sea Anomaly, which can be defined as a subtrough. Sometimes the subtrough is created by the escape of ionospheric plasma from the summer to the winter hemisphere. Then a density maximum forms in the winter hemisphere at adjacent latitudes. A subtrough is much more common under low solar activity than under high.

Forecast of Ionospheric TEC during Solar Storms in Low and Mid-Latitudes Using Kriging and Recurrent Neural Network

Sun, 12/01/2024 - 00:00
Abstract

Geomagnetic storms are disorders in Earth’s magnetic field triggered by solar activity. This research attempts to foretell the total electron content (TEC) using the Kriging and AI model in both low and mid-latitude stations during strong geomagnetic storms that happened on March 17, 2015 and February 3, 2022. This research paper focuses on predicting and analysing TEC anomalies in the ionosphere during the solar storm by using three models: ordinary kriging (OK), cokriging (CoK) and recurrent neural network (RNN). The predicted TEC values by the models are justified with the TIEGCM and KMPCA models. Parameters like RMSE, CC, MAE, and MAPE were applied to assess the execution of predictive models and to quantify the accuracy of predictions. The average RMSE for TEC predicted in the low-latitude region ranges from 4.90 to 5.41, 5.85 to 6.26 and 8.50 to 9.90 for the OK, CoK, and RNN models, respectively. Likewise, the average RMSE for TEC predicted in the mid-latitude region ranges from 1.81 to 4.04, 1.91 to 4.24 and 2.77 to 5.38 for the OK, CoK, and RNN models, respectively. The performance evaluation parameters show that the OK performs better than the CoK and RNN models.

Intensive Substorms during the Main Phase of the Magnetic Storm on March 23–24, 2023

Sun, 12/01/2024 - 00:00
Abstract

Here we studied the planetary features of the spatiotemporal distribution of ionospheric electrojets recorded in the onset of a substorm and in time on the activity maximum of three very intense substorms (with an AL-index from –1200 to –1700 nT) observed during the main phase of the strong magnetic storm on March 23−24, 2023. We have analyzed the substorms by applying the global maps of the planetary distribution of high-latitude ionospheric currents, compiled from simultaneous magnetic measurements on 66 low-orbit satellites of the AMPERE project, as well as ground-based magnetograms from the Scandinavian IMAGE profile and mid-latitude IZMIRAN stations located in the same longitudinal region. It was established that the onset of all the studied substorms on the IMAGE meridian was accompanied by the development of a nighttime current vortex with clockwise rotation, which is an indicator of an increase in downward field-aligned currents. The ground-based mid-latitude observations at the IZMIRAN station network confirmed that the center of the current wedge of the substorm was located in the nighttime sector significantly east of the IMAGE meridian. In the time of the substorm intensity maximum, a similar but more extensive current vortex was observed in the morning sector, which is probably typical of intense substorms.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer