Space Science Reviews

Syndicate content
The latest content available from Springer
Updated: 1 day 19 hours ago

Microlensing of Strongly Lensed Quasars

Wed, 02/07/2024 - 00:00
Abstract

Strong gravitational lensing of quasars has the potential to unlock the poorly understood physics of these fascinating objects, as well as serve as a probe of the lensing mass distribution and of cosmological parameters. In particular, gravitational microlensing by compact bodies in the lensing galaxy can enable mapping of quasar structure to \(<10^{-6}\) arcsec scales. Some of this potential has been realized over the past few decades, however the upcoming era of large sky surveys promises to bring this promise to full fruition. In this article, we review the theoretical framework of this field, describe the prominent current methods for parameter inference from quasar microlensing data across different observing modalities, and discuss the constraints so far derived on the geometry and physics of quasar inner structure. We also review the application of strong lensing and microlensing to constraining the granularity of the lens potential, i.e. the contribution of the baryonic and dark matter components, and the local mass distribution in the lens, i.e. the stellar mass function. Finally, we discuss the future of the field, including the new possibilities that will be opened by the next generation of large surveys and by new analysis methods now being developed.

Strong Gravitational Lensing and Microlensing of Supernovae

Mon, 02/05/2024 - 00:00
Abstract

Strong gravitational lensing and microlensing of supernovae (SNe) are emerging as a new probe of cosmology and astrophysics in recent years. We provide an overview of this nascent research field, starting with a summary of the first discoveries of strongly lensed SNe. We describe the use of the time delays between multiple SN images as a way to measure cosmological distances and thus constrain cosmological parameters, particularly the Hubble constant, whose value is currently under heated debates. New methods for measuring the time delays in lensed SNe have been developed, and the sample of lensed SNe from the upcoming Rubin Observatory Legacy Survey of Space and Time (LSST) is expected to provide competitive cosmological constraints. Lensed SNe are also powerful astrophysical probes. We review the usage of lensed SNe to constrain SN progenitors, acquire high-z SN spectra through lensing magnifications, infer SN sizes via microlensing, and measure properties of dust in galaxies. The current challenge in the field is the rarity and difficulty in finding lensed SNe. We describe various methods and ongoing efforts to find these spectacular explosions, forecast the properties of the expected sample of lensed SNe from upcoming surveys particularly the LSST, and summarize the observational follow-up requirements to enable the various scientific studies. We anticipate the upcoming years to be exciting with a boom in lensed SN discoveries.

Essentials of Strong Gravitational Lensing

Mon, 02/05/2024 - 00:00
Abstract

Of order one in \(10^{3}\) quasars and high-redshift galaxies appears in the sky as multiple images as a result of gravitational lensing by unrelated galaxies and clusters that happen to be in the foreground. While the basic phenomenon is a straightforward consequence of general relativity, there are many non-obvious consequences that make multiple-image lensing systems (aka strong gravitational lenses) remarkable astrophysical probes in several different ways. This article is an introduction to the essential concepts and terminology in this area, emphasizing physical insight. The key construct is the Fermat potential or arrival-time surface: from it the standard lens equation, and the notions of image parities, magnification, critical curves, caustics, and degeneracies all follow. The advantages and limitations of the usual simplifying assumptions (geometrical optics, small angles, weak fields, thin lenses) are noted, and to the extent possible briefly, it is explained how to go beyond these. Some less well-known ideas are discussed at length: arguments using wavefronts show that much of the theory carries over unchanged to the regime of strong gravitational fields; saddle-point contours explain how even the most complicated image configurations are made up of just two ingredients. Orders of magnitude, and the question of why strong lensing is most common for objects at cosmological distance, are also discussed. The challenges of lens modeling, and diverse strategies developed to overcome them, are discussed in general terms, without many technical details.

Science with a Small Two-Band UV-Photometry Mission I: Mission Description and Follow-up Observations of Stellar Transients

Fri, 02/02/2024 - 00:00
Abstract

This is the first in a collection of three papers introducing the science with an ultra-violet (UV) space telescope on an approximately 130 kg small satellite with a moderately fast re-pointing capability and a real-time alert communication system approved for a Czech national space mission. The mission, called Quick Ultra-Violet Kilonova surveyor—QUVIK, will provide key follow-up capabilities to increase the discovery potential of gravitational wave observatories and future wide-field multi-wavelength surveys. The primary objective of the mission is the measurement of the UV brightness evolution of kilonovae, resulting from mergers of neutron stars, to distinguish between different explosion scenarios. The mission, which is designed to be complementary to the Ultraviolet Transient Astronomy Satellite—ULTRASAT, will also provide unique follow-up capabilities for other transients both in the near- and far-UV bands. Between the observations of transients, the satellite will target other objects described in this collection of papers, which demonstrates that a small and relatively affordable dedicated UV-space telescope can be transformative for many fields of astrophysics.

Atmospheric Science Questions for a Uranian Probe

Fri, 02/02/2024 - 00:00
Abstract

The Ice Giants represent a unique and relatively poorly characterized class of planets that have been largely unexplored since the brief Voyager 2 flyby in the late 1980s. Uranus is particularly enigmatic, due to its extreme axial tilt, offset magnetic field, apparent low heat budget, mysteriously cool stratosphere and warm thermosphere, as well as a lack of well-defined, long-lived storm systems and distinct atmospheric features. All these characteristics make Uranus a scientifically intriguing target, particularly for missions able to complete in situ measurements. The 2023-2032 Decadal Strategy for Planetary Science and Astrobiology prioritized a flagship orbiter and probe to explore Uranus with the intent to “...transform our knowledge of Ice Giants in general and the Uranian system in particular” (National Academies of Sciences, Engineering, and Medicine in Origins, worlds, and life: a decadal strategy for planetary science and astrobiology 2023-2032, The National Academies Press, Washington, 2022). In support of this recommendation, we present community-supported science questions, key measurements, and a suggested instrument suite that focuses on the exploration and characterization of the Uranian atmosphere by an in situ probe. The scope of these science questions encompasses the origin, evolution, and current processes that shape the Uranian atmosphere, and in turn the Uranian system overall. Addressing these questions will inform vital new insights about Uranus, Ice Giants and Gas Giants in general, the large population of Neptune-sized exoplanets, and the Solar System as a whole.

The Comet Interceptor Mission

Wed, 01/24/2024 - 00:00
Abstract

Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum \(\varDelta \) V capability of \(600\text{ ms}^{-1}\) . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.

The Deep Oxygen Abundance in Solar System Giant Planets, with a New Derivation for Saturn

Mon, 01/22/2024 - 00:00
Abstract

Deep elemental composition is a challenging measurement to achieve in the giant planets of the solar system. Yet, knowledge of the deep composition offers important insights in the internal structure of these planets, their evolutionary history and their formation scenarios. A key element whose deep abundance is difficult to obtain is oxygen, because of its propensity for being in condensed phases such as rocks and ices. In the atmospheres of the giant planets, oxygen is largely stored in water molecules that condense below the observable levels. At atmospheric levels that can be investigated with remote sensing, water abundance can modify the observed meteorology, and meteorological phenomena can distribute water through the atmosphere in complex ways that are not well understood and that encompass deeper portions of the atmosphere. The deep oxygen abundance provides constraints on the connection between atmosphere and interior and on the processes by which other elements were trapped, making its determination an important element to understand giant planets. In this paper, we review the current constraints on the deep oxygen abundance of the giant planets, as derived from observations and thermochemical models.

Magnetic Reconnection at Planetary Bodies and Astrospheres

Fri, 01/19/2024 - 00:00
Abstract

Magnetic reconnection is a fundamental mechanism for the transport of mass and energy in planetary magnetospheres and astrospheres. While the process of reconnection is itself ubiquitous across a multitude of systems, the techniques used for its analysis can vary across scientific disciplines. Here we frame the latest understanding of reconnection theory by missions such as NASA’s Magnetospheric Multiscale (MMS) mission for use throughout the solar system and beyond. We discuss how reconnection can couple magnetized obstacles to both sub- and super-magnetosonic upstream flows. In addition, we address the need to model sheath plasmas and field-line draping around an obstacle to accurately parameterize the possibility for reconnection to occur. We conclude with a discussion of how reconnection energy conversion rates scale throughout the solar system. The results presented are not only applicable to within our solar system but also to astrospheres and exoplanets, such as the first recently detected exoplanet magnetosphere of HAT-11-1b.

The Scientific Calibration of the Dawn Framing Camera

Tue, 01/09/2024 - 00:00
Abstract

NASA’s Dawn mission visited the large main-belt asteroids Ceres and Vesta, returning a rich data set. Its science and navigation cameras, Framing Cameras 1 and 2, provided more than 100,000 surface images in total of both targets with seven colour and one panchromatic channels. This paper summarizes the scientific calibration of the Framing Camera images, combining information from on-ground and in-flight calibration campaigns. We describe the calibration methods, algorithms, and parameters that led to the final level 1c data product, including correcting stray light sources. In addition, we detail the performance and stability of both instruments.

Improved Design of an Advanced Ice Giants Net Flux Radiometer

Tue, 01/09/2024 - 00:00
Abstract

In this paper, the improved design of an Ice Giants Net Flux Radiometer (IG-NFR), for inclusion as a payload on a future Uranus probe mission, is given. IG-NFR will measure the net radiation flux, in seven spectral bands, each with a 10° Field-Of-View (FOV) and in five viewing angles as a function of altitude. Net flux measurements within spectral filter bands, ranging from solar to far-infrared, will help derive radiative heating and cooling profiles, and will significantly contribute to our understanding of the planet’s atmospheric heat balance and structure, tropospheric 3-D flow, and compositions and opacities of the cloud layers. The IG-NFR uses an array of non-imaging Winston cones integrated to a matched thermopile detector Focal Plane Assembly (FPA), with individual bandpass filters and windows, housed in a vacuum micro-vessel. The FPA thermopile detector signals are read out in parallel mode, amplified and processed by a multi-channel digitizer application specific integrated circuit (MCD ASIC) under field programmable gate array (FPGA) control. The vacuum micro-vessel rotates providing chopping between FOV’s of upward and downward radiation fluxes. This unique design allows for small net flux measurements in the presence of large ambient fluxes and rapidly changing temperatures during the probe descent to ≥10 bar pressure.

The Uranus Multi-Experiment Radiometer for Haze and Clouds Characterization

Tue, 01/09/2024 - 00:00
Abstract

The aerosols (clouds and hazes) on Uranus are one of the main elements for understanding the thermal structure and dynamics of its atmosphere. Aerosol particles absorb and scatter the solar radiation, directly affecting the energy balance that drives the atmospheric dynamics of the planet. In this sense, aerosol information such as the vertical distribution or optical properties is essential for characterizing the interactions between sunlight and aerosol particles at each altitude in the atmosphere and for understanding the energy balance of the planet’s atmosphere. Moreover, the distribution of aerosols in the atmosphere provides key information on the global circulation of the planet (e.g., regions of upwelling or subsidence).

To address this challenge, we propose the Uranus Multi-experiment Radiometer (UMR), a lightweight instrument designed to characterize the aerosols in Uranus’ atmosphere as part of the upcoming Uranus Flagship mission’s descending probe payload. The scientific goals of UMR are: (1) to study the variation of the solar radiation in the ultra-violet (UV) with altitude and characterize the energy deposition in the atmosphere; (2) to study the vertical distribution of the hazes and clouds and characterize their scattering and optical properties; (3) to investigate the heating rates of the atmosphere by directly measuring the upward and downward fluxes; and (4) to study the cloud vertical distribution and composition at pressures where sunlight is practically negligible (p > 4-5 bars).

The instrument includes a set of photodetectors, field-of-view masks, a light infrared lamp, and interference filters. It draws on the heritage of previous instruments developed at the Instituto Nacional de Técnica Aeroespacial (INTA) that participated in the exploration of Mars, where similar technology has demonstrated its endurance in extreme environments while utilizing limited resources regarding power consumption, mass and volume footprints, and data budget. The radiometer’s design and characteristics make it a valuable complementary payload for studying Uranus’ atmosphere with a high scientific return.

The First Lucy Earth Flyby (EGA1)

Mon, 01/08/2024 - 00:00
Abstract

The Lucy spacecraft successfully performed the first of two Earth Gravity Assist maneuvers on October 16th 2022, flying 360 km above the Earth’s surface at 11:04 UT. The flyby was essential for the Lucy mission design, but also provided a wealth of data for scientific, calibration, and public engagement purposes. The Earth and Moon provided excellent calibration targets, being large, bright, and well-characterized, though instrument saturation was sometimes an issue, as the instruments are designed for operation 5 AU from the sun. Calibration data of the Earth and/or Moon were taken with all Lucy instruments, improving knowledge of instrument alignment, stray light characteristics, and sensitivity to resolved targets. In addition, Lucy obtained scientifically valuable thermal emission spectra of the Moon, and extensive images of the DART mission impact into the Didymos system, from a unique geometry, 20 days before the Earth flyby.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer